No Arabic abstract
We shall give bounds on the spacing of zeros of certain functions belonging to the Laguerre-Polya class and satisfying a second order differential equation. As a corollary we establish new sharp inequalities on the extreme zeros of the Hermite, Laguerre and Jacobi polinomials, which are uniform in all the parameters.
We derive properties of powers of a function satisfying a second-order linear differential equation. In particular we prove that the n-th power of the function satisfies an (n+1)-th order differential equation and give a simple method for obtaining the differential equation. Also we determine the exponents of the differential equation and derive a bound for the degree of the polynomials, which are coefficients in the differential equation. The bound corresponds to the order of differential equation satisfied by the n-fold convolution of the Fourier transform of the function. These results are applied to some probability density functions used in statistics.
We comprehensively study admissible transformations between normal linear systems of second-order ordinary differential equations with an arbitrary number of dependent variables under several appropriate gauges of the arbitrary elements parameterizing these systems. For each class from the constructed chain of nested gauged classes of such systems, we single out its singular subclass, which appears to consist of systems being similar to the elementary (free particle) system whereas the regular subclass is the complement of the singular one. This allows us to exhaustively describe the equivalence groupoids of the above classes as well as of their singular and regular subclasses. Applying various algebraic techniques, we establish principal properties of Lie symmetries of the systems under consideration and outline ways for completely classifying these symmetries. In particular, we compute the sharp lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by systems from each of the above classes and subclasses. We also show how equivalence transformations and Lie symmetries can be used for reduction of order of such systems and their integration. As an illustrative example of using the theory developed, we solve the complete group classification problems for all these classes in the case of two dependent variables.
Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.
The Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studied. The Laguerre-Freud structure semi-infinite matrix that models the shifts by $pm 1$ in the independent variable of the set of orthogonal polynomials is introduced. In the semiclassical case it is proven that this Laguerre-Freud matrix is banded. From the well known fact that moments of the semiclassical weights are logarithmic derivatives of generalized hypergeometric functions, it is shown how the contiguous relations for these hypergeometric functions translate as symmetries for the corresponding moment matrix. It is found that the 3D Nijhoff-Capel discrete Toda lattice describes the corresponding contiguous shifts for the squared norms of the orthogonal polynomials. The continuous Toda for these semiclassical discrete orthogonal polynomials is discussed and the compatibility equations are derived. It also shown that the Kadomtesev-Petvishvilii equation is connected to an adequate deformed semiclassical discrete weight, but in this case the deformation do not satisfy a Pearson equation.
In an earlier paper (A. N. Kochubei, {it Pacif. J. Math.} 269 (2014), 355--369), the author considered a restriction of Vladimirovs fractional differentiation operator $D^alpha$, $alpha >0$, to radial functions on a non-Archimedean field. In particular, it was found to possess such a right inverse $I^alpha$ that the change of an unknown function $u=I^alpha v$ reduces the Cauchy problem for a linear equation with $D^alpha$ (for radial functions) to an integral equation whose properties resemble those of classical Volterra equations. In other words, we found, in the framework of non-Archimedean pseudo-differential operators, a counterpart of ordinary differential equations. In the present paper, we study nonlinear equations of this kind, find conditions of their local and global solvability.