Do you want to publish a course? Click here

Video Moment Retrieval with Text Query Considering Many-to-Many Correspondence Using Potentially Relevant Pair

121   0   0.0 ( 0 )
 Added by Sho Maeoki
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper we undertake the task of text-based video moment retrieval from a corpus of videos. To train the model, text-moment paired datasets were used to learn the correct correspondences. In typical training methods, ground-truth text-moment pairs are used as positive pairs, whereas other pairs are regarded as negative pairs. However, aside from the ground-truth pairs, some text-moment pairs should be regarded as positive. In this case, one text annotation can be positive for many video moments. Conversely, one video moment can be corresponded to many text annotations. Thus, there are many-to-many correspondences between the text annotations and video moments. Based on these correspondences, we can form potentially relevant pairs, which are not given as ground truth yet are not negative; effectively incorporating such relevant pairs into training can improve the retrieval performance. The text query should describe what is happening in a video moment. Hence, different video moments annotated with similar texts, which contain a similar action, are likely to hold the similar action, thus these pairs can be considered as potentially relevant pairs. In this paper, we propose a novel training method that takes advantage of potentially relevant pairs, which are detected based on linguistic analysis about text annotation. Experiments on two benchmark datasets revealed that our method improves the retrieval performance both quantitatively and qualitatively.



rate research

Read More

The query-based moment retrieval is a problem of localising a specific clip from an untrimmed video according a query sentence. This is a challenging task that requires interpretation of both the natural language query and the video content. Like in many other areas in computer vision and machine learning, the progress in query-based moment retrieval is heavily driven by the benchmark datasets and, therefore, their quality has significant impact on the field. In this paper, we present a series of experiments assessing how well the benchmark results reflect the true progress in solving the moment retrieval task. Our results indicate substantial biases in the popular datasets and unexpected behaviour of the state-of-the-art models. Moreover, we present new sanity check experiments and approaches for visualising the results. Finally, we suggest possible directions to improve the temporal sentence grounding in the future. Our code for this paper is available at https://mayu-ot.github.io/hidden-challenges-MR .
82 - Xun Yang , Fuli Feng , Wei Ji 2021
We tackle the task of video moment retrieval (VMR), which aims to localize a specific moment in a video according to a textual query. Existing methods primarily model the matching relationship between query and moment by complex cross-modal interactions. Despite their effectiveness, current models mostly exploit dataset biases while ignoring the video content, thus leading to poor generalizability. We argue that the issue is caused by the hidden confounder in VMR, {i.e., temporal location of moments}, that spuriously correlates the model input and prediction. How to design robust matching models against the temporal location biases is crucial but, as far as we know, has not been studied yet for VMR. To fill the research gap, we propose a causality-inspired VMR framework that builds structural causal model to capture the true effect of query and video content on the prediction. Specifically, we develop a Deconfounded Cross-modal Matching (DCM) method to remove the confounding effects of moment location. It first disentangles moment representation to infer the core feature of visual content, and then applies causal intervention on the disentangled multimodal input based on backdoor adjustment, which forces the model to fairly incorporate each possible location of the target into consideration. Extensive experiments clearly show that our approach can achieve significant improvement over the state-of-the-art methods in terms of both accuracy and generalization (Codes: color{blue}{url{https://github.com/Xun-Yang/Causal_Video_Moment_Retrieval}}
In this paper, we propose a novel method for video moment retrieval (VMR) that achieves state of the arts (SOTA) performance on R@1 metrics and surpassing the SOTA on the high IoU metric (R@1, IoU=0.7). First, we propose to use a multi-head self-attention mechanism, and further a cross-attention scheme to capture video/query interaction and long-range query dependencies from video context. The attention-based methods can develop frame-to-query interaction and query-to-frame interaction at arbitrary positions and the multi-head setting ensures the sufficient understanding of complicated dependencies. Our model has a simple architecture, which enables faster training and inference while maintaining . Second, We also propose to use multiple task training objective consists of moment segmentation task, start/end distribution prediction and start/end location regression task. We have verified that start/end prediction are noisy due to annotator disagreement and joint training with moment segmentation task can provide richer information since frames inside the target clip are also utilized as positive training examples. Third, we propose to use an early fusion approach, which achieves better performance at the cost of inference time. However, the inference time will not be a problem for our model since our model has a simple architecture which enables efficient training and inference.
In this paper, we investigate the problem of retrieving images from a database based on a multi-modal (image-text) query. Specifically, the query text prompts some modification in the query image and the task is to retrieve images with the desired modifications. For instance, a user of an E-Commerce platform is interested in buying a dress, which should look similar to her friends dress, but the dress should be of white color with a ribbon sash. In this case, we would like the algorithm to retrieve some dresses with desired modifications in the query dress. We propose an autoencoder based model, ComposeAE, to learn the composition of image and text query for retrieving images. We adopt a deep metric learning approach and learn a metric that pushes composition of source image and text query closer to the target images. We also propose a rotational symmetry constraint on the optimization problem. Our approach is able to outperform the state-of-the-art method TIRG cite{TIRG} on three benchmark datasets, namely: MIT-States, Fashion200k and Fashion IQ. In order to ensure fair comparison, we introduce strong baselines by enhancing TIRG method. To ensure reproducibility of the results, we publish our code here: url{https://github.com/ecom-research/ComposeAE}.
Video-text retrieval is an important yet challenging task in vision-language understanding, which aims to learn a joint embedding space where related video and text instances are close to each other. Most current works simply measure the video-text similarity based on video-level and text-level embeddings. However, the neglect of more fine-grained or local information causes the problem of insufficient representation. Some works exploit the local details by disentangling sentences, but overlook the corresponding videos, causing the asymmetry of video-text representation. To address the above limitations, we propose a Hierarchical Alignment Network (HANet) to align different level representations for video-text matching. Specifically, we first decompose video and text into three semantic levels, namely event (video and text), action (motion and verb), and entity (appearance and noun). Based on these, we naturally construct hierarchical representations in the individual-local-global manner, where the individual level focuses on the alignment between frame and word, local level focuses on the alignment between video clip and textual context, and global level focuses on the alignment between the whole video and text. Different level alignments capture fine-to-coarse correlations between video and text, as well as take the advantage of the complementary information among three semantic levels. Besides, our HANet is also richly interpretable by explicitly learning key semantic concepts. Extensive experiments on two public datasets, namely MSR-VTT and VATEX, show the proposed HANet outperforms other state-of-the-art methods, which demonstrates the effectiveness of hierarchical representation and alignment. Our code is publicly available.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا