No Arabic abstract
Video-text retrieval is an important yet challenging task in vision-language understanding, which aims to learn a joint embedding space where related video and text instances are close to each other. Most current works simply measure the video-text similarity based on video-level and text-level embeddings. However, the neglect of more fine-grained or local information causes the problem of insufficient representation. Some works exploit the local details by disentangling sentences, but overlook the corresponding videos, causing the asymmetry of video-text representation. To address the above limitations, we propose a Hierarchical Alignment Network (HANet) to align different level representations for video-text matching. Specifically, we first decompose video and text into three semantic levels, namely event (video and text), action (motion and verb), and entity (appearance and noun). Based on these, we naturally construct hierarchical representations in the individual-local-global manner, where the individual level focuses on the alignment between frame and word, local level focuses on the alignment between video clip and textual context, and global level focuses on the alignment between the whole video and text. Different level alignments capture fine-to-coarse correlations between video and text, as well as take the advantage of the complementary information among three semantic levels. Besides, our HANet is also richly interpretable by explicitly learning key semantic concepts. Extensive experiments on two public datasets, namely MSR-VTT and VATEX, show the proposed HANet outperforms other state-of-the-art methods, which demonstrates the effectiveness of hierarchical representation and alignment. Our code is publicly available.
Text-video retrieval is a challenging task that aims to search relevant video contents based on natural language descriptions. The key to this problem is to measure text-video similarities in a joint embedding space. However, most existing methods only consider the global cross-modal similarity and overlook the local details. Some works incorporate the local comparisons through cross-modal local matching and reasoning. These complex operations introduce tremendous computation. In this paper, we design an efficient global-local alignment method. The multi-modal video sequences and text features are adaptively aggregated with a set of shared semantic centers. The local cross-modal similarities are computed between the video feature and text feature within the same center. This design enables the meticulous local comparison and reduces the computational cost of the interaction between each text-video pair. Moreover, a global alignment method is proposed to provide a global cross-modal measurement that is complementary to the local perspective. The global aggregated visual features also provide additional supervision, which is indispensable to the optimization of the learnable semantic centers. We achieve consistent improvements on three standard text-video retrieval benchmarks and outperform the state-of-the-art by a clear margin.
Employing large-scale pre-trained model CLIP to conduct video-text retrieval task (VTR) has become a new trend, which exceeds previous VTR methods. Though, due to the heterogeneity of structures and contents between video and text, previous CLIP-based models are prone to overfitting in the training phase, resulting in relatively poor retrieval performance. In this paper, we propose a multi-stream Corpus Alignment network with single gate Mixture-of-Experts (CAMoE) and a novel Dual Softmax Loss (DSL) to solve the two heterogeneity. The CAMoE employs Mixture-of-Experts (MoE) to extract multi-perspective video representations, including action, entity, scene, etc., then align them with the corresponding part of the text. In this stage, we conduct massive explorations towards the feature extraction module and feature alignment module. DSL is proposed to avoid the one-way optimum-match which occurs in previous contrastive methods. Introducing the intrinsic prior of each pair in a batch, DSL serves as a reviser to correct the similarity matrix and achieves the dual optimal match. DSL is easy to implement with only one-line code but improves significantly. The results show that the proposed CAMoE and DSL are of strong efficiency, and each of them is capable of achieving State-of-The-Art (SOTA) individually on various benchmarks such as MSR-VTT, MSVD, and LSMDC. Further, with both of them, the performance is advanced to a big extend, surpassing the previous SOTA methods for around 4.6% R@1 in MSR-VTT.
We address the problem of specific video event retrieval. Given a query video of a specific event, e.g., a concert of Madonna, the goal is to retrieve other videos of the same event that temporally overlap with the query. Our approach encodes the frame descriptors of a video to jointly represent their appearance and temporal order. It exploits the properties of circulant matrices to efficiently compare the videos in the frequency domain. This offers a significant gain in complexity and accurately localizes the matching parts of videos. The descriptors can be compressed in the frequency domain with a product quantizer adapted to complex numbers. In this case, video retrieval is performed without decompressing the descriptors. We also consider the temporal alignment of a set of videos. We exploit the matching confidence and an estimate of the temporal offset computed for all pairs of videos by our retrieval approach. Our robust algorithm aligns the videos on a global timeline by maximizing the set of temporally consistent matches. The global temporal alignment enables synchronous playback of the videos of a given scene.
Image-text matching plays a central role in bridging the semantic gap between vision and language. The key point to achieve precise visual-semantic alignment lies in capturing the fine-grained cross-modal correspondence between image and text. Most previous methods rely on single-step reasoning to discover the visual-semantic interactions, which lacks the ability of exploiting the multi-level information to locate the hierarchical fine-grained relevance. Different from them, in this work, we propose a step-wise hierarchical alignment network (SHAN) that decomposes image-text matching into multi-step cross-modal reasoning process. Specifically, we first achieve local-to-local alignment at fragment level, following by performing global-to-local and global-to-global alignment at context level sequentially. This progressive alignment strategy supplies our model with more complementary and sufficient semantic clues to understand the hierarchical correlations between image and text. The experimental results on two benchmark datasets demonstrate the superiority of our proposed method.
Many real-world video-text tasks involve different levels of granularity, such as frames and words, clip and sentences or videos and paragraphs, each with distinct semantics. In this paper, we propose a Cooperative hierarchical Transformer (COOT) to leverage this hierarchy information and model the interactions between different levels of granularity and different modalities. The method consists of three major components: an attention-aware feature aggregation layer, which leverages the local temporal context (intra-level, e.g., within a clip), a contextual transformer to learn the interactions between low-level and high-level semantics (inter-level, e.g. clip-video, sentence-paragraph), and a cross-modal cycle-consistency loss to connect video and text. The resulting method compares favorably to the state of the art on several benchmarks while having few parameters. All code is available open-source at https://github.com/gingsi/coot-videotext