Do you want to publish a course? Click here

Lifting convex inequalities for bipartite bilinear programs

100   0   0.0 ( 0 )
 Added by Santanu Dey
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The goal of this paper is to derive new classes of valid convex inequalities for quadratically constrained quadratic programs (QCQPs) through the technique of lifting. Our first main result shows that, for sets described by one bipartite bilinear constraint together with bounds, it is always possible to sequentially lift a seed inequality that is valid for a restriction obtained by fixing variables to their bounds, when the lifting is accomplished using affine functions of the fixed variables. In this setting, sequential lifting involves solving a non-convex nonlinear optimization problem each time a variable is lifted, just as in Mixed Integer Linear Programming. To reduce the computational burden associated with this procedure, we develop a framework based on subadditive approximations of lifting functions that permits sequence-independent lifting of seed inequalities for separable bipartite bilinear sets. In particular, this framework permits the derivation of closed-form valid inequalities. We then study a separable bipartite bilinear set where the coefficients form a minimal cover with respect to the right-hand-side. For this set, we introduce a bilinear cover inequality, which is second-order cone representable. We argue that this bilinear cover inequality is strong by showing that it yields a constant-factor approximation of the convex hull of the original set. We study its lifting function and construct a two-slope subadditive upper bound. Using this subadditive approximation, we lift fixed variable pairs in closed-form, thus deriving a lifted bilinear cover inequality that is valid for general separable bipartite bilinear sets with box constraints.



rate research

Read More

This paper presents a selected tour through the theory and applications of lifts of convex sets. A lift of a convex set is a higher-dimensional convex set that projects onto the original set. Many convex sets have lifts that are dramatically simpler to describe than the original set. Finding such simple lifts has significant algorithmic implications, particularly for optimization problems. We consider both the classical case of polyhedral lifts, described by linear inequalities, as well as spectrahedral lifts, defined by linear matrix inequalities, with a focus on recent developments related to spectrahedral lifts. Given a convex set, ideally we would either like to find a (low-complexity) polyhedral or spectrahedral lift, or find an obstruction proving that no such lift is possible. To this end, we explain the connection between the existence of lifts of a convex set and certain structured factorizations of its associated slack operator. Based on this characterization, we describe a uniform approach, via sums of squares, to the construction of spectrahedral lifts of convex sets and illustrate the method on several families of examples. Finally, we discuss two flavors of obstruction to the existence of lifts: one related to facial structure, and the other related to algebraic properties of the set in question. Rather than being exhaustive, our aim is to illustrate the richness of the area. We touch on a range of different topics related to the existence of lifts, and present many examples of lifts from different areas of mathematics and its applications.
We show how to efficiently compute the derivative (when it exists) of the solution map of log-log convex programs (LLCPs). These are nonconvex, nonsmooth optimization problems with positive variables that become convex when the variables, objective functions, and constraint functions are replaced with their logs. We focus specifically on LLCPs generated by disciplined geometric programming, a grammar consisting of a set of atomic functions with known log-log curvature and a composition rule for combining them. We represent a parametrized LLCP as the composition of a smooth transformation of parameters, a convex optimization problem, and an exponential transformation of the convex optimization problems solution. The derivative of this composition can be computed efficiently, using recently developed methods for differentiating through convex optimization problems. We implement our method in CVXPY, a Python-embedded modeling language and rewriting system for convex optimization. In just a few lines of code, a user can specify a parametrized LLCP, solve it, and evaluate the derivative or its adjoint at a vector. This makes it possible to conduct sensitivity analyses of solutions, given perturbations to the parameters, and to compute the gradient of a function of the solution with respect to the parameters. We use the adjoint of the derivative to implement differentiable log-log convex optimization layers in PyTorch and TensorFlow. Finally, we present applications to designing queuing systems and fitting structured prediction models.
Inspired by the decomposition in the hybrid quantum-classical optimization algorithm we introduced in arXiv:1902.04215, we propose here a new (fully classical) approach to solving certain non-convex integer programs using Graver bases. This method is well suited when (a) the constraint matrix $A$ has a special structure so that its Graver basis can be computed systematically, (b) several feasible solutions can also be constructed easily and (c) the objective function can be viewed as many convex functions quilted together. Classes of problems that satisfy these conditions include Cardinality Boolean Quadratic Problems (CBQP), Quadratic Semi-Assignment Problems (QSAP) and Quadratic Assignment Problems (QAP). Our Graver Augmented Multi-seed Algorithm (GAMA) utilizes augmentation along Graver basis elements (the improvement direction is obtained by comparing objective function values) from these multiple initial feasible solutions. We compare our approach with a best-in-class commercially available solver (Gurobi). Sensitivity analysis indicates that the rate at which GAMA slows down as the problem size increases is much lower than that of Gurobi. We find that for several instances of practical relevance, GAMA not only vastly outperforms in terms of time to find the optimal solution (by two or three orders of magnitude), but also finds optimal solutions within minutes when the commercial solver is not able to do so in 4 or 10 hours (depending on the problem class) in several cases.
86 - Zichong Li , Yangyang Xu 2020
First-order methods (FOMs) have been widely used for solving large-scale problems. A majority of existing works focus on problems without constraint or with simple constraints. Several recent works have studied FOMs for problems with complicated functional constraints. In this paper, we design a novel augmented Lagrangian (AL) based FOM for solving problems with non-convex objective and convex constraint functions. The new method follows the framework of the proximal point (PP) method. On approximately solving PP subproblems, it mixes the usage of the inexact AL method (iALM) and the quadratic penalty method, while the latter is always fed with estimated multipliers by the iALM. We show a complexity result of $O(varepsilon^{-frac{5}{2}}|logvarepsilon|)$ for the proposed method to achieve an $varepsilon$-KKT point. This is the best known result. Theoretically, the hybrid method has lower iteration-complexity requirement than its counterpart that only uses iALM to solve PP subproblems, and numerically, it can perform significantly better than a pure-penalty-based method. Numerical experiments are conducted on nonconvex linearly constrained quadratic programs and nonconvex QCQP. The numerical results demonstrate the efficiency of the proposed methods over existing ones.
We study constrained stochastic programs where the decision vector at each time slot cannot be chosen freely but is tied to the realization of an underlying random state vector. The goal is to minimize a general objective function subject to linear constraints. A typical scenario where such programs appear is opportunistic scheduling over a network of time-varying channels, where the random state vector is the channel state observed, and the control vector is the transmission decision which depends on the current channel state. We consider a primal-dual type Frank-Wolfe algorithm that has a low complexity update during each slot and that learns to make efficient decisions without prior knowledge of the probability distribution of the random state vector. We establish convergence time guarantees for the case of both convex and non-convex objective functions. We also emphasize application of the algorithm to non-convex opportunistic scheduling and distributed non-convex stochastic optimization over a connected graph.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا