Do you want to publish a course? Click here

GAMA: A Novel Algorithm for Non-Convex Integer Programs

175   0   0.0 ( 0 )
 Added by Hedayat Alghassi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Inspired by the decomposition in the hybrid quantum-classical optimization algorithm we introduced in arXiv:1902.04215, we propose here a new (fully classical) approach to solving certain non-convex integer programs using Graver bases. This method is well suited when (a) the constraint matrix $A$ has a special structure so that its Graver basis can be computed systematically, (b) several feasible solutions can also be constructed easily and (c) the objective function can be viewed as many convex functions quilted together. Classes of problems that satisfy these conditions include Cardinality Boolean Quadratic Problems (CBQP), Quadratic Semi-Assignment Problems (QSAP) and Quadratic Assignment Problems (QAP). Our Graver Augmented Multi-seed Algorithm (GAMA) utilizes augmentation along Graver basis elements (the improvement direction is obtained by comparing objective function values) from these multiple initial feasible solutions. We compare our approach with a best-in-class commercially available solver (Gurobi). Sensitivity analysis indicates that the rate at which GAMA slows down as the problem size increases is much lower than that of Gurobi. We find that for several instances of practical relevance, GAMA not only vastly outperforms in terms of time to find the optimal solution (by two or three orders of magnitude), but also finds optimal solutions within minutes when the commercial solver is not able to do so in 4 or 10 hours (depending on the problem class) in several cases.



rate research

Read More

For each integer $n$ we present an explicit formulation of a compact linear program, with $O(n^3)$ variables and constraints, which determines the satisfiability of any 2SAT formula with $n$ boolean variables by a single linear optimization. This contrasts with the fact that the natural polytope for this problem, formed from the convex hull of all satisfiable formulas and their satisfying assignments, has superpolynomial extension complexity. Our formulation is based on multicommodity flows. We also discuss connections of these results to the stable matching problem.
Large Neighborhood Search (LNS) is a combinatorial optimization heuristic that starts with an assignment of values for the variables to be optimized, and iteratively improves it by searching a large neighborhood around the current assignment. In this paper we consider a learning-based LNS approach for mixed integer programs (MIPs). We train a Neural Diving model to represent a probability distribution over assignments, which, together with an off-the-shelf MIP solver, generates an initial assignment. Formulating the subsequent search steps as a Markov Decision Process, we train a Neural Neighborhood Selection policy to select a search neighborhood at each step, which is searched using a MIP solver to find the next assignment. The policy network is trained using imitation learning. We propose a target policy for imitation that, given enough compute resources, is guaranteed to select the neighborhood containing the optimal next assignment amongst all possible choices for the neighborhood of a specified size. Our approach matches or outperforms all the baselines on five real-world MIP datasets with large-scale instances from diverse applications, including two production applications at Google. It achieves $2times$ to $37.8times$ better average primal gap than the best baseline on three of the datasets at large running times.
We study constrained stochastic programs where the decision vector at each time slot cannot be chosen freely but is tied to the realization of an underlying random state vector. The goal is to minimize a general objective function subject to linear constraints. A typical scenario where such programs appear is opportunistic scheduling over a network of time-varying channels, where the random state vector is the channel state observed, and the control vector is the transmission decision which depends on the current channel state. We consider a primal-dual type Frank-Wolfe algorithm that has a low complexity update during each slot and that learns to make efficient decisions without prior knowledge of the probability distribution of the random state vector. We establish convergence time guarantees for the case of both convex and non-convex objective functions. We also emphasize application of the algorithm to non-convex opportunistic scheduling and distributed non-convex stochastic optimization over a connected graph.
This paper investigates accelerating the convergence of distributed optimization algorithms on non-convex problems. We propose a distributed primal-dual stochastic gradient descent~(SGD) equipped with powerball method to accelerate. We show that the proposed algorithm achieves the linear speedup convergence rate $mathcal{O}(1/sqrt{nT})$ for general smooth (possibly non-convex) cost functions. We demonstrate the efficiency of the algorithm through numerical experiments by training two-layer fully connected neural networks and convolutional neural networks on the MNIST dataset to compare with state-of-the-art distributed SGD algorithms and centralized SGD algorithms.
We propose a novel hybrid quantum-classical approach to calculate Graver bases, which have the potential to solve a variety of hard linear and non-linear integer programs, as they form a test set (optimality certificate) with very appealing properties. The calculation of Graver bases is exponentially hard (in general) on classical computers, so they not used for solving practical problems on commercial solvers. With a quantum annealer, however, it may be a viable approach to use them. We test two hybrid quantum-classical algorithms (on D-Wave)--one for computing Graver basis and a second for optimizing non-linear integer programs that utilize Graver bases--to understand the strengths and limitations of the practical quantum annealers available today. Our experiments suggest that with a modest increase in coupler precision--along with near-term improvements in the number of qubits and connectivity (density of hardware graph) that are expected--the ability to outperform classical best-in-class algorithms is within reach, with respect to non-linear integer optimization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا