Do you want to publish a course? Click here

A simulation study of a windowless gas stripping room in an E//B neutral particle analyzer

322   0   0.0 ( 0 )
 Added by Weiping Lin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutral Particle Analyzer (NPA) is one of the crucial diagnostic devices on Tokamak facilities. Stripping unit is one of the main parts of the NPA. A windowless gas stripping room with two differential pipes is adopted in a parallel direction of electric and magnetic fields (E//B) NPA. The pressure distributions in the stripping chamber are simulated by Ansys Fluent together with MolFlow+. Based on the pressure distributions extracted from the simulation, the stripping efficiency of the E//B NPA is studied with GEANT4. The hadron reaction physics is modified to track the charge state of each particle in a cross section base method in GEANT4. The transmission rates ($R$) and the stripping efficiencies $f_{+1}$ are examined for the particle energy ranging from 20 to 200 keV at the input pressure ($P_0$) ranging from 20 to 400 Pa. According to the combined global efficiency, $R times f_{+1}$, $P_0$ = 240 Pa is obtained as the optimum pressure for the maximum global efficiency in the incident energy range investigated.



rate research

Read More

162 - J. Pierce , J. Brock , C. Carlin 2021
We report on a windowless, high-density, gas flow target at Jefferson Lab that was used to measure $r_p$, the root-mean-square charge radius of the proton. To our knowledge, this is the first such system used in a fixed-target experiment at a (non-storage ring) electron accelerator. The target achieved its design goal of an areal density of 2$times$10$^{18}$ atoms/cm$^2$, with the gas uniformly distributed over the 4 cm length of the cell and less than 1% residual gas outside the cell. This design eliminated scattering from the end caps of the target cell, a problem endemic to previous measurements of the proton charge radius in electron scattering experiments, and permitted a precise, model-independent extraction of $r_p$ by reaching unprecedentedly low values of $Q^2$, the square of the electrons transfer of four-momentum to the proton.
A cryogenic supersonic gas jet target was developed for the MAGIX experiment at the high-intensity electron accelerator MESA. It will be operated as an internal, windowless target in the energy-recovering recirculation arc of the accelerator with different target gases, e.g., hydrogen, deuterium, helium, oxygen, argon, or xenon. Detailed studies have been carried out at the existing A1 multi-spectrometer facility at the electron accelerator MAMI. This paper focuses on the developed handling procedures and diagnostic tools, and on the performance of the gas jet target under beam conditions. Considering the special features of this type of target, it proves to be well suited for a new generation of high-precision electron scattering experiments at high-intensity electron accelerators.
A windowless hydrogen gas target of nominal thickness $10^{19}$ cm$^{-2}$ is an essential component of the DarkLight experiment, which is designed to utilize the megawatt electron beam at an Energy Recovery Linac (ERL). The design of such a target is challenging because the pressure drops by many orders of magnitude between the central, high-density section of the target and the surrounding beamline, resulting in laminar, transitional, and finally molecular flow regimes. The target system was assembled and operated at Jefferson Labs Low Energy Recirculator Facility (LERF) in 2016, and subsequently underwent several revisions and calibration tests at MIT Bates in 2017. The system at dynamic equilibrium was simulated in COMSOL to provide a better understanding of its optimal operation at other working points. We have determined that a windowless gas target with sufficiently high density for DarkLights experimental needs is feasible in an ERL environment.
Charging-up processes affecting gain stability in Thick Gas Electron Multipliers (THGEM) were studied with a dedicated simulation toolkit. Integrated with Garfield++, it provides an effective platform for systematic phenomenological studies of charging-up processes in MPGD detectors. We describe the simulation tool and the fine-tuning of the step-size required for the algorithm convergence, in relation to physical parameters. Simulation results of gain stability over time in THGEM detectors are presented, exploring the role of electrode-thickness and applied voltage on its evolution. The results show that the total amount of irradiated charge through electrodes hole needed for reaching gain stabilization is in the range of tens to hundreds of pC, depending on the detector geometry and operational voltage. These results are in agreement with experimental observations presented previously.
Resistive Plate Chambers (RPC) have shown stable operation at the Large Hadron Collider and satisfactory efficiency for the entire Run 1 (2010-2013) and Run 2 (2015-2018) with C$_{2}$H$_{2}$F$_{4}$-based gas mixtures and the addition of SF$_{6}$ and i-C$_{4}$H$_{10}$. Since its global warming potential (GWP) is high, C$_{2}$H$_{2}$F$_{4}$ is phasing out of production due to recent European Union regulations and as a result its cost is progressively increasing. Therefore, finding a new RPC gas mixture with a low GWP has become extremely important. This contribution describes the simulation of the RPC efficiency with tetrafluoropropene C$_{3}$H$_{2}$F$_{4}$ (HFO1234ze), a hydrofluoroolefin with very low GWP. Simulation results are systematically compared with measurements of RPC efficiency in C$_{3}$H$_{2}$F$_{4}$-based gas mixtures with the addition of different combinations of Ar, He, CO$_{2}$, O$_{2}$ and i-C$_{4}$H$_{10}$ in various concentrations. This simulation allows the study of the interplay between C$_{3}$H$_{2}$F$_{4}$ and the other gas components in the mixture as well as may allow the identification of the most promising environment-friendly gas mixtures with C$_{3}$H$_{2}$F$_{4}$ for RPCs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا