No Arabic abstract
A cryogenic supersonic gas jet target was developed for the MAGIX experiment at the high-intensity electron accelerator MESA. It will be operated as an internal, windowless target in the energy-recovering recirculation arc of the accelerator with different target gases, e.g., hydrogen, deuterium, helium, oxygen, argon, or xenon. Detailed studies have been carried out at the existing A1 multi-spectrometer facility at the electron accelerator MAMI. This paper focuses on the developed handling procedures and diagnostic tools, and on the performance of the gas jet target under beam conditions. Considering the special features of this type of target, it proves to be well suited for a new generation of high-precision electron scattering experiments at high-intensity electron accelerators.
A windowless hydrogen gas target of nominal thickness $10^{19}$ cm$^{-2}$ is an essential component of the DarkLight experiment, which is designed to utilize the megawatt electron beam at an Energy Recovery Linac (ERL). The design of such a target is challenging because the pressure drops by many orders of magnitude between the central, high-density section of the target and the surrounding beamline, resulting in laminar, transitional, and finally molecular flow regimes. The target system was assembled and operated at Jefferson Labs Low Energy Recirculator Facility (LERF) in 2016, and subsequently underwent several revisions and calibration tests at MIT Bates in 2017. The system at dynamic equilibrium was simulated in COMSOL to provide a better understanding of its optimal operation at other working points. We have determined that a windowless gas target with sufficiently high density for DarkLights experimental needs is feasible in an ERL environment.
We report on a windowless, high-density, gas flow target at Jefferson Lab that was used to measure $r_p$, the root-mean-square charge radius of the proton. To our knowledge, this is the first such system used in a fixed-target experiment at a (non-storage ring) electron accelerator. The target achieved its design goal of an areal density of 2$times$10$^{18}$ atoms/cm$^2$, with the gas uniformly distributed over the 4 cm length of the cell and less than 1% residual gas outside the cell. This design eliminated scattering from the end caps of the target cell, a problem endemic to previous measurements of the proton charge radius in electron scattering experiments, and permitted a precise, model-independent extraction of $r_p$ by reaching unprecedentedly low values of $Q^2$, the square of the electrons transfer of four-momentum to the proton.
A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution and angular distribution. Liquid lithium is circulated through the target loop at ~200oC and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of > 4 kW/cm2 and volume power density of ~ 2 MW/cm3 at a lithium flow of ~4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91- 2.5 MeV, 1-2 mA) at SARAF.
Silicon Drift Detectors, widely employed in high-resolution and high-rate X-ray applications, are considered here with interest also for electron detection. The accurate measurement of the tritium beta decay is the core of the TRISTAN (TRitium Investigation on STerile to Active Neutrino mixing) project. This work presents the characterization of a single-pixel SDD detector with a mono-energetic electron beam obtained from a Scanning Electron Microscope. The suitability of the SDD to detect electrons, in the energy range spanning from few keV to tens of keV, is demonstrated. Experimental measurements reveal a strong effect of the detectors entrance window structure on the observed energy response. A detailed detector model is therefore necessary to reconstruct the spectrum of an unknown beta-decay source.
Radiation-hard ionization chambers were tested using an intense electron beam from the accelerator test facility (ATF) at the Brookhaven National Laboratory (BNL). The detectors were designed to be used as the basic element for monitoring muons in the Main Injector Neutrino beamline (NuMI) at the Fermi National Accelerator Laboratory (FNAL). Measurements of linearity of response, voltage dependence, and the onset of ionization saturation as a function of gap voltage were performed.