Do you want to publish a course? Click here

Statistical Multifragmentation Model within the Extended Morphological Thermodynamics Approach

205   0   0.0 ( 0 )
 Added by Kyrill Bugaev
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

On the basis of morphological thermodynamics we develop an exactly solvable version of statistical mutifragmentation model for the nuclear liquid-gas phase transition. It is shown that the hard-core repulsion between spherical nuclei generates only the bulk (volume), surface and curvature parts of the free energy of the nucleus, while the Gaussian curvature one does not appear in the derivation. The phase diagram of nuclear liquid-gas phase transition is studied for a truncated version of the developed model.



rate research

Read More

The Statistical Multifragmentation Model is modified to incorporate the Helmholtz free energies calculated in the finite temperature Thomas-Fermi approximation using Skyrme effective interactions. In this formulation, the density of the fragments at the freeze-out configuration corresponds to the equilibrium value obtained in the Thomas-Fermi approximation at the given temperature. The behavior of the nuclear caloric curve at constant volume is investigated in the micro-canonical ensemble and a plateau is observed for excitation energies between 8 and 10 MeV per nucleon. A kink in the caloric curve is found at the onset of this gas transition, indicating the existence of a small excitation energy region with negative heat capacity. In contrast to previous statistical calculations, this situation takes place even in this case in which the system is constrained to fixed volume. The observed phase transition takes place at approximately constant entropy. The charge distribution and other observables also turn out to be sensitive to the treatment employed in the calculation of the free energies and the fragments volumes at finite temperature, specially at high excitation energies. The isotopic distribution is also affected by this treatment, which suggests that this prescription may help to obtain information on the nuclear equation of state.
The Generalized Fermi Breakup recently demonstrated to be formally equivalent to the Statistical Multifragmentation Model, if the contribution of excited states are included in the state densities of the former, is implemented. Since this treatment requires the application of the Statistical Multifragmentation Model repeatedly on the hot fragments until they have decayed to their ground states, it becomes extremely computational demanding, making its application to the systems of interest extremely difficult. Based on exact recursion formulae previously developed by Chase and Mekjian to calculate the statistical weights very efficiently, we present an implementation which is efficient enough to allow it to be applied to large systems at high excitation energies. Comparison with the GEMINI++ sequential decay code shows that the predictions obtained with our treatment are fairly similar to those obtained with this more traditional model.
A wealth of data on charmonium production in Pb-Pb collisions from the LHC experiments has provided strong evidence for (re-)generation as a dominant production mechanism at low transverse momentum. We present an important extension of the statistical hadronisation model to describe $rm{J}/psi$ transverse momentum distributions based on input parameters from hydrodynamical simulations. Comparison to the data allows the testing of the degree of thermalisation of charm quarks in the quark-gluon plasma. To this end we will report analyses of the $rm{J}/psi$ transverse momentum spectra in Pb-Pb collisions at $sqrt{s_{rm NN}} = 2.76$ and $5.02$ TeV.
291 - S. Das Gupta , A.Z. Mekjian 1997
We use a simplified model which is based on the same physics as inherent in most statistical models for nuclear multifragmentation. The simplified model allows exact calculations for thermodynamic properties of systems of large number of particles. This enables us to study a phase transition in the model. A first order phase transition can be tracked down. There are significant differences between this phase transition and some other well-known cases.
113 - S.R. Souza , R. Donangelo 2020
We study the size properties of the largest intermediate mass fragments in each partition mode, produced in the prompt statistical breakup of a thermally equilibrated nuclear source, at different temperatures. We find that an appreciable amount of events have primary intermediate mass fragments of similar sizes. Our results suggest that, depending on the temperature of the fragmenting source, their production may be much larger than what would be expected from considerations based on purely combinatorial arrangements of the nucleons in the fragmenting system. We also find that the isospin composition of the largest fragments is sensitive to their rank size within the event. We suggest that experimental analyses, conceived to reconstruct the breakup configuration, should be employed to investigate the validity of our findings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا