Do you want to publish a course? Click here

On the multiparameter Falconer distance problem

369   0   0.0 ( 0 )
 Added by Yumeng Ou
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We study an extension of the Falconer distance problem in the multiparameter setting. Given $ellgeq 1$ and $mathbb{R}^{d}=mathbb{R}^{d_1}timescdots timesmathbb{R}^{d_ell}$, $d_igeq 2$. For any compact set $Esubset mathbb{R}^{d}$ with Hausdorff dimension larger than $d-frac{min(d_i)}{2}+frac{1}{4}$ if $min(d_i) $ is even, $d-frac{min(d_i)}{2}+frac{1}{4}+frac{1}{4min(d_i)}$ if $min(d_i) $ is odd, we prove that the multiparameter distance set of $E$ has positive $ell$-dimensional Lebesgue measure. A key ingredient in the proof is a new multiparameter radial projection theorem for fractal measures.



rate research

Read More

The first purpose of this paper is to provide new finite field extension theorems for paraboloids and spheres. By using the unusual good Fourier transform of the zero sphere in some specific dimensions, which has been discovered recently in the work of Iosevich, Lee, Shen, and the first and second listed authors (2018), we provide a new $L^2to L^r$ extension estimate for paraboloids in dimensions $d=4k+3$ and $qequiv 3mod 4$, which improves significantly the recent exponent obtained by the first listed author. In the case of spheres, we introduce a way of using textit{the first association scheme graph} to analyze energy sets, and as a consequence, we obtain new $L^pto L^4$ extension theorems for spheres of primitive radii in odd dimensions, which break the Stein-Tomas result toward $L^pto L^4$ which has stood for more than ten years. Most significantly, it follows from the results for spheres that there exists a different extension phenomenon between spheres and paraboloids in odd dimensions, namely, the $L^pto L^4$ estimates for spheres with primitive radii are much stronger than those for paraboloids. Based on new estimates, we will also clarify conjectures on finite field extension problem for spheres. This results in a reasonably complete description of finite field extension theorems for spheres. The second purpose is to show that there is a connection between the restriction conjecture associated to paraboloids and the ErdH{o}s-Falconer distance conjecture over finite fields. The last is to prove that the ErdH{o}s-Falconer distance conjecture holds in odd-dimensional spaces when we study distances between two sets: one set lies on a variety (paraboloids or spheres), and the other set is arbitrary in $mathbb{F}_q^d$.
Given $E subseteq mathbb{F}_q^d times mathbb{F}_q^d$, with the finite field $mathbb{F}_q$ of order $q$ and the integer $d ge 2$, we define the two-parameter distance set as $Delta_{d, d}(E)=left{left(|x_1-y_1|, |x_2-y_2|right) : (x_1,x_2), (y_1,y_2) in E right}$. Birklbauer and Iosevich (2017) proved that if $|E| gg q^{frac{3d+1}{2}}$, then $ |Delta_{d, d}(E)| = q^2$. For the case of $d=2$, they showed that if $|E| gg q^{frac{10}{3}}$, then $ |Delta_{2, 2}(E)| gg q^2$. In this paper, we present extensions and improvements of these results.
We prove a point-wise and average bound for the number of incidences between points and hyper-planes in vector spaces over finite fields. While our estimates are, in general, sharp, we observe an improvement for product sets and sets contained in a sphere. We use these incidence bounds to obtain significant improvements on the arithmetic problem of covering ${mathbb F}_q$, the finite field with q elements, by $A cdot A+... +A cdot A$, where A is a subset ${mathbb F}_q$ of sufficiently large size. We also use the incidence machinery we develope and arithmetic constructions to study the Erdos-Falconer distance conjecture in vector spaces over finite fields. We prove that the natural analog of the Euclidean Erdos-Falconer distance conjecture does not hold in this setting due to the influence of the arithmetic. On the positive side, we obtain good exponents for the Erdos -Falconer distance problem for subsets of the unit sphere in $mathbb F_q^d$ and discuss their sharpness. This results in a reasonably complete description of the Erdos-Falconer distance problem in higher dimensional vector spaces over general finite fields.
It is shown that product BMO of Chang and Fefferman, defined on the product of Euclidean spaces can be characterized by the multiparameter commutators of Riesz transforms. This extends a classical one-parameter result of Coifman, Rochberg, and Weiss, and at the same time extends the work of Lacey and Ferguson and Lacey and Terwilleger on multiparameter commutators with Hilbert transforms. The method of proof requires the real-variable methods throughout, which is new in the multi-parameter context.
Given a compact $E subset mathbb{R}^n$ and $s > 0$, the maximum distance problem seeks a compact and connected subset of $mathbb{R}^n$ of smallest one dimensional Hausdorff measure whose $s$-neighborhood covers $E$. For $Esubset mathbb{R}^2$, we prove that minimizing over minimum spanning trees that connect the centers of balls of radius $s$, which cover $E$, solves the maximum distance problem. The main difficulty in proving this result is overcome by the proof of Lemma 3.5, which states that one is able to cover the $s$-neighborhood of a Lipschitz curve $Gamma$ in $mathbb{R}^2$ with a finite number of balls of radius $s$, and connect their centers with another Lipschitz curve $Gamma_ast$, where $mathcal{H}^1(Gamma_ast)$ is arbitrarily close to $mathcal{H}^1(Gamma)$. We also present an open source package for computational exploration of the maximum distance problem using minimum spanning trees, available at https://github.com/mtdaydream/MDP_MST.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا