No Arabic abstract
Given $E subseteq mathbb{F}_q^d times mathbb{F}_q^d$, with the finite field $mathbb{F}_q$ of order $q$ and the integer $d ge 2$, we define the two-parameter distance set as $Delta_{d, d}(E)=left{left(|x_1-y_1|, |x_2-y_2|right) : (x_1,x_2), (y_1,y_2) in E right}$. Birklbauer and Iosevich (2017) proved that if $|E| gg q^{frac{3d+1}{2}}$, then $ |Delta_{d, d}(E)| = q^2$. For the case of $d=2$, they showed that if $|E| gg q^{frac{10}{3}}$, then $ |Delta_{2, 2}(E)| gg q^2$. In this paper, we present extensions and improvements of these results.
The first purpose of this paper is to provide new finite field extension theorems for paraboloids and spheres. By using the unusual good Fourier transform of the zero sphere in some specific dimensions, which has been discovered recently in the work of Iosevich, Lee, Shen, and the first and second listed authors (2018), we provide a new $L^2to L^r$ extension estimate for paraboloids in dimensions $d=4k+3$ and $qequiv 3mod 4$, which improves significantly the recent exponent obtained by the first listed author. In the case of spheres, we introduce a way of using textit{the first association scheme graph} to analyze energy sets, and as a consequence, we obtain new $L^pto L^4$ extension theorems for spheres of primitive radii in odd dimensions, which break the Stein-Tomas result toward $L^pto L^4$ which has stood for more than ten years. Most significantly, it follows from the results for spheres that there exists a different extension phenomenon between spheres and paraboloids in odd dimensions, namely, the $L^pto L^4$ estimates for spheres with primitive radii are much stronger than those for paraboloids. Based on new estimates, we will also clarify conjectures on finite field extension problem for spheres. This results in a reasonably complete description of finite field extension theorems for spheres. The second purpose is to show that there is a connection between the restriction conjecture associated to paraboloids and the ErdH{o}s-Falconer distance conjecture over finite fields. The last is to prove that the ErdH{o}s-Falconer distance conjecture holds in odd-dimensional spaces when we study distances between two sets: one set lies on a variety (paraboloids or spheres), and the other set is arbitrary in $mathbb{F}_q^d$.
In this paper we obtain a new lower bound on the ErdH{o}s distinct distances problem in the plane over prime fields. More precisely, we show that for any set $Asubset mathbb{F}_p^2$ with $|A|le p^{7/6}$, the number of distinct distances determined by pairs of points in $A$ satisfies $$ |Delta(A)| gg |A|^{frac{1}{2}+frac{149}{4214}}.$$ Our result gives a new lower bound of $|Delta{(A)}|$ in the range $|A|le p^{1+frac{149}{4065}}$. The main tools we employ are the energy of a set on a paraboloid due to Rudnev and Shkredov, a point-line incidence bound given by Stevens and de Zeeuw, and a lower bound on the number of distinct distances between a line and a set in $mathbb{F}_p^2$. The latter is the new feature that allows us to improve the previous bound due Stevens and de Zeeuw.
The triangle covering number of a graph is the minimum number of vertices that hit all triangles. Given positive integers $s,t$ and an $n$-vertex graph $G$ with $lfloor n^2/4 rfloor +t$ edges and triangle covering number $s$, we determine (for large $n$) sharp bounds on the minimum number of triangles in $G$ and also describe the extremal constructions. Similar results are proved for cliques of larger size and color critical graphs. This extends classical work of Rademacher, ErdH os, and Lovasz-Simonovits whose results apply only to $s le t$. Our results also address two conjectures of Xiao and Katona. We prove one of them and give a counterexample and prove a modified version of the other conjecture.
Given a sequence $mathbf{k} := (k_1,ldots,k_s)$ of natural numbers and a graph $G$, let $F(G;mathbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,dots,s$ such that, for every $c in {1,dots,s}$, the edges of colour $c$ contain no clique of order $k_c$. Write $F(n;mathbf{k})$ to denote the maximum of $F(G;mathbf{k})$ over all graphs $G$ on $n$ vertices. This problem was first considered by ErdH{o}s and Rothschild in 1974, but it has been solved only for a very small number of non-trivial cases. In previous work with Yilma, we constructed a finite optimisation problem whose maximum is equal to the limit of $log_2 F(n;mathbf{k})/{nchoose 2}$ as $n$ tends to infinity and proved a stability theorem for complete multipartite graphs $G$. In this paper we provide a sufficient condition on $mathbf{k}$ which guarantees a general stability theorem for any graph $G$, describing the asymptotic structure of $G$ on $n$ vertices with $F(G;mathbf{k}) = F(n;mathbf{k}) cdot 2^{o(n^2)}$ in terms of solutions to the optimisation problem. We apply our theorem to systematically recover existing stability results as well as all cases with $s=2$. The proof uses a novel version of symmetrisation on edge-coloured weighted multigraphs.
Let $textbf{k} := (k_1,ldots,k_s)$ be a sequence of natural numbers. For a graph $G$, let $F(G;textbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,dots,s$ such that, for every $c in {1,dots,s}$, the edges of colour $c$ contain no clique of order $k_c$. Write $F(n;textbf{k})$ to denote the maximum of $F(G;textbf{k})$ over all graphs $G$ on $n$ vertices. There are currently very few known exact (or asymptotic) results known for this problem, posed by ErdH{o}s and Rothschild in 1974. We prove some new exact results for $n to infty$: (i) A sufficient condition on $textbf{k}$ which guarantees that every extremal graph is a complete multipartite graph, which systematically recovers all existing exact results. (ii) Addressing the original question of ErdH{o}s and Rothschild, in the case $textbf{k}=(3,ldots,3)$ of length $7$, the unique extremal graph is the complete balanced $8$-partite graph, with colourings coming from Hadamard matrices of order $8$. (iii) In the case $textbf{k}=(k+1,k)$, for which the sufficient condition in (i) does not hold, for $3 leq k leq 10$, the unique extremal graph is complete $k$-partite with one part of size less than $k$ and the other parts as equal in size as possible.