Do you want to publish a course? Click here

Self-assembled structures of colloidal dimers and disks on a spherical surface

73   0   0.0 ( 0 )
 Added by Santi Prestipino
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the self-assembly on a spherical surface of a model for a binary mixture of amphiphilic dimers in the presence of guest particles via Monte Carlo (MC) computer simulation. All particles have a hard core, but one monomer of the dimer also interacts with the guest particle by means of a short-range attractive potential. We observe the formation of aggregates of various shape as a function of the composition of the mixture and of the size of guest particles. Our MC simulations are a further step towards a microscopic understanding of experiments on colloidal aggregation over curved surfaces, such as oil droplets.



rate research

Read More

We investigate the structure of a dilute mixture of amphiphilic dimers and spherical particles, a model relevant to the problem of encapsulating globular guest molecules in a dispersion. Dimers and spheres are taken to be hard particles, with an additional attraction between spheres and the smaller monomers in a dimer. Using Monte Carlo simulation, we document the low-temperature formation of aggregates of guests (clusters) held together by dimers, whose typical size and shape depend on the guest concentration $chi$. For low $chi$ (less than $10%$), most guests are isolated and coated with a layer of dimers. As $chi$ progressively increases, clusters grow in size becoming more and more elongated and polydisperse; after reaching a shallow maximum for $chiapprox 50%$, the size of clusters again reduces upon increasing $chi$ further. In one case only ($chi=50%$ and moderately low temperature) the mixture relaxed to a fluid of lamellae, suggesting that in this case clusters are metastable with respect to crystal-vapor separation. On heating, clusters shrink until eventually the system becomes homogeneous on all scales. On the other hand, as the mixture is made denser and denser at low temperature, clusters get increasingly larger until a percolating network is formed.
111 - M. Belkin , A. Glatz , A. Snezhko 2010
We propose a first-principles model for self-assembled magnetic surface structures on the water-air interface reported in earlier experiments cite{snezhko2,snezhko4}. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended on the water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snake-like structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids. The model provides valuable insights into self-organization phenomena in a broad range of non-equilibrium magnetic and electrostatic systems with competing interactions.
The study of particle motion on spherical surfaces is relevant to adsorption on buckyballs and other solid particles. This paper reports results for the binding energy of such dimers, consisting of two light particles (He atoms or hydrogen molecules) constrained to move on a spherical surface. The binding energy reaches a particularly large value when the radius of the sphere is about 3/4 of the particles diameter.
From dumbbells to FCC crystals, we study the self-assembly pathway of amphiphatic, spherical colloidal particles as a function of the size of the hydrophobic region using molecular dynamics simulations. Specifically, we analyze how local inter-particle interactions correlate to the final self-assembled aggregate and how they affect the dynamical pathway of structure formation. We present a detailed diagram separating the many phases that we find for different sizes of the hydrophobic area, and uncover a narrow region where particles self-assemble into hollow, faceted cages that could potentially find interesting engineering applications.
Colloidal crystals exhibit structural color without any color pigment due to the crystals periodic nanostructure, which can interfere with visible light. This crystal structure is iridescent as the resulting color changes with the viewing or illumination angle, which limits its use for printing or displays. To eliminate the iridescent property, it is important to make the packing of the colloidal nanoparticles disordered. Here, we introduce a drop-casting method where a droplet of a water- ethanol mixture containing monodisperse polymer-coated silica nanoparticles creates a relatively uniform and non-iridescent deposit after the droplet evaporates completely on a heated substrate. The uniformity is caused by a thermal Marangoni flow and fast evaporation effects due to the heated substrate, whereas non-iridescence is the outcome of short-range-ordered packing of nanoparticles by depletion attraction and friction effects produced by polymer brushes. We show that the colors of the final deposits from individual droplets remain unchanged while the viewing angle is varied under ambient light. We expect that the coating method is compatible with ink-jet printing and the uniformly coated self-assembled non-iridescent nanostructures have potential for color displays using reflection mode and other optical devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا