Do you want to publish a course? Click here

Model for Dynamic Self-Assembled Magnetic Surface Structures

102   0   0.0 ( 0 )
 Added by Andreas Glatz
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a first-principles model for self-assembled magnetic surface structures on the water-air interface reported in earlier experiments cite{snezhko2,snezhko4}. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended on the water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snake-like structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids. The model provides valuable insights into self-organization phenomena in a broad range of non-equilibrium magnetic and electrostatic systems with competing interactions.



rate research

Read More

We study the self-assembly on a spherical surface of a model for a binary mixture of amphiphilic dimers in the presence of guest particles via Monte Carlo (MC) computer simulation. All particles have a hard core, but one monomer of the dimer also interacts with the guest particle by means of a short-range attractive potential. We observe the formation of aggregates of various shape as a function of the composition of the mixture and of the size of guest particles. Our MC simulations are a further step towards a microscopic understanding of experiments on colloidal aggregation over curved surfaces, such as oil droplets.
The design of artificial microswimmers is often inspired by the strategies of natural microorganisms. Many of these creatures exploit the fact that elasticity breaks the time-reversal symmetry of motion at low Reynolds numbers, but this principle has been notably absent from model systems of active, self-propelled microswimmers. Here we introduce a class of microswimmer that spontaneously self-assembles and swims without using external forces, driven instead by surface phase transitions induced by temperature variations. The swimmers are made from alkane droplets dispersed in aqueous surfactant solution, which start to self-propel upon cooling, pushed by rapidly growing thin elastic tails. When heated, the same droplets recharge by retracting their tails, swimming for up to tens of minutes in each cycle. Thermal oscillations of approximately 5 degrees Celsius induce the swimmers to harness heat from the environment and recharge multiple times. We develop a detailed elastohydrodynamic model of these processes and highlight the molecular mechanisms involved. The system offers a convenient platform for examining symmetry breaking in the motion of swimmers exploiting flagellar elasticity. The mild conditions and biocompatible media render these microswimmers potential probes for studying biological propulsion and interactions between artificial and biological swimmers.
Directed assembly of block polymers is rapidly becoming a viable strategy for lithographic patterning of nanoscopic features. One of the key attributes of directed assembly is that an underlying chemical or topographic substrate pattern used to direct assembly need not exhibit a direct correspondence with the sought after block polymer morphology, and past work has largely relied on trial-and-error approaches to design appropriate patterns. In this work, a computational evolutionary strategy is proposed to solve this optimization problem. By combining the Cahn-Hilliard equation, which is used to find the equilibrium morphology, and the covariance-matrix evolutionary strategy, which is used to optimize the combined outcome of particular substrate-copolymer combinations, we arrive at an efficient method for design of substrates leading to non-trivial, desirable outcomes.
We study long range density fluctuations (hyperuniformity) in two-dimensional jammed packings of bidisperse droplets. Taking advantage of microfluidics, we systematically span a large range of size and concentration ratios of the two droplet populations. We identify various defects increasing long range density fluctuations mainly due to organization of local particle environment. By choosing an appropriate bidispersity, we fabricate materials with a high level of hyperuniformity. Interesting transparency properties of these optimized materials are established based on numerical simulations.
Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such surface tension, bending moduli and line tension. Understanding how the molecular property of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا