Do you want to publish a course? Click here

Uniform coating of self-assembled non-iridescent colloidal nanostructures using Marangoni effects and polymers

211   0   0.0 ( 0 )
 Added by Hyoungsoo Kim
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Colloidal crystals exhibit structural color without any color pigment due to the crystals periodic nanostructure, which can interfere with visible light. This crystal structure is iridescent as the resulting color changes with the viewing or illumination angle, which limits its use for printing or displays. To eliminate the iridescent property, it is important to make the packing of the colloidal nanoparticles disordered. Here, we introduce a drop-casting method where a droplet of a water- ethanol mixture containing monodisperse polymer-coated silica nanoparticles creates a relatively uniform and non-iridescent deposit after the droplet evaporates completely on a heated substrate. The uniformity is caused by a thermal Marangoni flow and fast evaporation effects due to the heated substrate, whereas non-iridescence is the outcome of short-range-ordered packing of nanoparticles by depletion attraction and friction effects produced by polymer brushes. We show that the colors of the final deposits from individual droplets remain unchanged while the viewing angle is varied under ambient light. We expect that the coating method is compatible with ink-jet printing and the uniformly coated self-assembled non-iridescent nanostructures have potential for color displays using reflection mode and other optical devices.



rate research

Read More

We study by simulation the physics of two colloidal particles in a cholesteric liquid crystal with tangential order parameter alignment at the particle surface. The effective force between the pair is attractive at short range and favors assembly of colloid dimers at specific orientations relative to the local director field. When pulled through the fluid by a constant force along the helical axis, we find that such a dimer rotates, either continuously or stepwise with phase-slip events. These cases are separated by a sharp dynamical transition and lead, respectively, to a constant or an ever-increasing phase lag between the dimer orientation and the local nematic director.
The design of artificial microswimmers is often inspired by the strategies of natural microorganisms. Many of these creatures exploit the fact that elasticity breaks the time-reversal symmetry of motion at low Reynolds numbers, but this principle has been notably absent from model systems of active, self-propelled microswimmers. Here we introduce a class of microswimmer that spontaneously self-assembles and swims without using external forces, driven instead by surface phase transitions induced by temperature variations. The swimmers are made from alkane droplets dispersed in aqueous surfactant solution, which start to self-propel upon cooling, pushed by rapidly growing thin elastic tails. When heated, the same droplets recharge by retracting their tails, swimming for up to tens of minutes in each cycle. Thermal oscillations of approximately 5 degrees Celsius induce the swimmers to harness heat from the environment and recharge multiple times. We develop a detailed elastohydrodynamic model of these processes and highlight the molecular mechanisms involved. The system offers a convenient platform for examining symmetry breaking in the motion of swimmers exploiting flagellar elasticity. The mild conditions and biocompatible media render these microswimmers potential probes for studying biological propulsion and interactions between artificial and biological swimmers.
78 - Purbarun Dhar 2020
This article explores the governing role of the internal hydrodynamics and advective transport within sessile colloidal droplets on the self assembly of nanostructures to form floral patterns. Water acetone binary fluid and Bi2O3 nanoflakes based complex fluids are experimented with. Microliter sessile droplets are allowed to vaporize and the dry out patterns are examined using scanning electron microscopy. The presence of distributed self assembled rose like structures is observed. The population density, structure and shape of the floral structures are noted to be dependent on the binary fluid composition and nanomaterial concentration. Detailed microscopic particle image velocimetry analysis is undertaken to qualitatively and quantitatively describe the solutal Marangoni advection within the evaporating droplets. It has been shown that the kinetics, regime and location of the internal advection are responsible factors towards the hydrodynamics influenced clustering, aggregation and self-assembly of the nanoflakes. In addition, the size of the nanostructures and the complex fluids.
209 - Chiu Fan Lee 2012
We investigate the length distribution of self-assembled, long and stiff polymers at thermal equilibrium. Our analysis is based on calculating the partition functions of stiff polymers of variable lengths in the elastic regime. Our conclusion is that the length distribution of this self-assembled system follows closely the exponential distribution, except at the short length limit. We then discuss the implications of our results on the experimentally observed length distributions in amyloid fibrils.
We describe a novel approach for the rational design and synthesis of self-assembled periodic nanostructures using martensitic phase transformations. We demonstrate this approach in a thin film of perovskite SrSnO3 with reconfigurable periodic nanostructures consisting of regularly spaced regions of sharply contrasted dielectric properties. The films can be designed to have different periodicities and relative phase fractions via chemical doping or strain engineering. The dielectric contrast within a single film can be tuned using temperature and laser wavelength, effectively creating a variable photonic crystal. Our results show the realistic possibility of designing large-area self-assembled periodic structures using martensitic phase transformations with the potential of implementing built-to-order nanostructures for tailored optoelectronic functionalities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا