No Arabic abstract
Binary black hole may form near a supermassive black hole. The background black hole (BH) will affect the gravitational wave (GW) generated by the binary black hole. It is well known that the Penrose process may provide extra energy due to the ergosphere. In the present paper we investigate the energy amplification of the gravitational wave by a Kerr black hole background. In particular and different from the earlier studies, we compare the energies of the waves in the cases with and without a nearby Kerr BH. We find that only when the binary black hole is moving relative to the Kerr background can the GW energy be amplified. Otherwise, the energy will be suppressed by the background Kerr black hole. This finding is consistent with the inequality found by Wald for Penrose process. Taking into account realistic astrophysical scenarios, we find that the Kerr black hole background can amplify the GW energy by at most 5 times.
LIGO and Virgo have recently observed a number of gravitational wave (GW) signals that are fully consistent with being emitted by binary black holes described by general relativity. However, there are theoretical proposals of exotic objects that can be massive and compact enough to be easily confused with black holes. Nevertheless, these objects differ from black holes in having nonzero tidal deformabilities, which can allow one to distinguish binaries containing such objects from binary black holes using GW observations. Using full Bayesian parameter estimation, we investigate the possibility of constraining the parameter space of such black hole mimickers with upcoming GW observations. Employing perfect fluid stars with a polytropic equation of state as a simple model that can encompass a variety of possible black hole mimickers, we show how the observed masses and tidal deformabilities of a binary constrain the equation of state. We also show how such constraints can be used to rule out some simple models of boson stars.
Context. The Event Horizon Telescope (EHT) collaboration recently obtained first images of the surroundings of the supermassive compact object M87* at the center of the galaxy M87. Aims. We want to develop a simple analytic disk model for the accretion flow of M87*. Compared to general-relativistic magnetohydrodynamic (GRMHD) models, it has the advantage of being independent of the turbulent character of the flow, and controlled by only few easy-to-interpret, physically meaningful parameters. We want to use this model to predict the image of M87* assuming that it is either a Kerr black hole, or an alternative compact object. Methods. We compute the synchrotron emission from the disk model and propagate the resulting light rays to the far-away observer by means of relativistic ray tracing. Such computations are performed assuming different spacetimes (Kerr, Minkowski, non-rotating ultracompact star, rotating boson star or Lamy spinning wormhole). We perform numerical fits of these models to the EHT data. Results. We discuss the highly-lensed features of Kerr images and show that they are intrinsically linked to the accretion-flow properties, and not only to gravitation. This fact is illustrated by the notion of secondary ring that we introduce. Our model of spinning Kerr black hole predicts mass and orientation consistent with the EHT interpretation. The non-Kerr images result in similar quality of the numerical fits and may appear very similar to Kerr images, once blurred to the EHT resolution. This implies that a strong test of the Kerr spacetime may be out of reach with the current data. We notice that future developments of the EHT could alter this situation. Conclusions. Our results show the importance of studying alternatives to the Kerr spacetime in order to be able to test the Kerr paradigm unambiguously.
Gravitational waves from coalescing binary black holes encode the evolution of their spins prior to merger. In the post-Newtonian regime and on the precession timescale, this evolution has one of three morphologies, with the spins either librating around one of two fixed points (resonances) or circulating freely. In this work we perform full parameter estimation on resonant binaries with fixed masses and spin magnitudes, changing three parameters: a conserved projected effective spin $xi$ and resonant family $DeltaPhi=0,pi$ (which uniquely label the source), the inclination $theta_{JN}$ of the binarys total angular momentum with respect to the line of sight (which determines the strength of precessional effects in the waveform), and the signal amplitude. We demonstrate that resonances can be distinguished for a wide range of binaries, except for highly symmetric configurations where precessional effects are suppressed. Motivated by new insight into double-spin evolution, we introduce new variables to characterize precessing black hole binaries which naturally reflects the timescale separation of the system and therefore better encode the dynamical information carried by gravitational waves.
Accurate gravitational-wave (GW) signal models exist for black hole binary (BBH) and neutron-star binary (BNS) systems, which are consistent with all of the published GW observations to date. Detections of a third class of compact-binary systems, neutron-star black hole (NSBH) binaries, have not yet been confirmed, but are eagerly awaited in the near future. For NSBH systems, GW models do not exist across the viable parameter space of signals. In this work we present the frequency-domain phenomenological model, PhenomNSBH, for GWs produced by NSBH systems with mass ratios from equal-mass up to 15, spin on the black hole up to a dimensionless spin of $|chi|=0.5$, and tidal deformabilities ranging from 0 (the BBH limit) to 5000. We extend previous work on a phenomenological amplitude model for NSBH systems to produce an amplitude model that is parameterized by a single tidal deformability parameter. This amplitude model is combined with an analytic phase model describing tidal corrections. The resulting approximant is compared to publicly-available NSBH numerical-relativity simulations and hybrid waveforms constructed from numerical-relativity simulations and tidal inspiral approximants. For most signals observed by second-generation ground-based detectors, it will be difficult to use the GW signal alone to distinguish single NSBH systems from either BNSs or BBHs, and therefore to unambiguously identify an NSBH system.
Vacuum perturbations of the Kerr metric can be reconstructed from the corresponding perturbation in either of the two Weyl scalars $psi_0$ or $psi_4$, using a procedure described by Chrzanowski and others in the 1970s. More recent work, motivated within the context of self-force physics, extends the procedure to metric perturbations sourced by a particle in a bound geodesic orbit. However, the existing procedure leaves undetermined a certain stationary, axially-symmetric piece of the metric perturbation. In the vacuum region away from the particle, this completion piece corresponds simply to mass and angular-momentum perturbations of the Kerr background, with amplitudes that are, however, a priori unknown. Here we present and implement a rigorous method for finding the completion piece. The key idea is to impose continuity, off the particle, of certain gauge-invariant fields constructed from the full (completed) perturbation, in order to determine the unknown amplitude parameters of the completion piece. We implement this method in full for bound (eccentric) geodesic orbits in the equatorial plane of the Kerr black hole. Our results provide a rigorous underpinning of recent results by Friedman {it et al.} for circular orbits, and extend them to non-circular orbits.