Do you want to publish a course? Click here

Completion of metric reconstruction for a particle orbiting a Kerr black hole

137   0   0.0 ( 0 )
 Added by Cesar Merlin
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Vacuum perturbations of the Kerr metric can be reconstructed from the corresponding perturbation in either of the two Weyl scalars $psi_0$ or $psi_4$, using a procedure described by Chrzanowski and others in the 1970s. More recent work, motivated within the context of self-force physics, extends the procedure to metric perturbations sourced by a particle in a bound geodesic orbit. However, the existing procedure leaves undetermined a certain stationary, axially-symmetric piece of the metric perturbation. In the vacuum region away from the particle, this completion piece corresponds simply to mass and angular-momentum perturbations of the Kerr background, with amplitudes that are, however, a priori unknown. Here we present and implement a rigorous method for finding the completion piece. The key idea is to impose continuity, off the particle, of certain gauge-invariant fields constructed from the full (completed) perturbation, in order to determine the unknown amplitude parameters of the completion piece. We implement this method in full for bound (eccentric) geodesic orbits in the equatorial plane of the Kerr black hole. Our results provide a rigorous underpinning of recent results by Friedman {it et al.} for circular orbits, and extend them to non-circular orbits.



rate research

Read More

92 - Yi Gong , Zhoujian Cao , 2021
Binary black hole may form near a supermassive black hole. The background black hole (BH) will affect the gravitational wave (GW) generated by the binary black hole. It is well known that the Penrose process may provide extra energy due to the ergosphere. In the present paper we investigate the energy amplification of the gravitational wave by a Kerr black hole background. In particular and different from the earlier studies, we compare the energies of the waves in the cases with and without a nearby Kerr BH. We find that only when the binary black hole is moving relative to the Kerr background can the GW energy be amplified. Otherwise, the energy will be suppressed by the background Kerr black hole. This finding is consistent with the inequality found by Wald for Penrose process. Taking into account realistic astrophysical scenarios, we find that the Kerr black hole background can amplify the GW energy by at most 5 times.
Context. The Event Horizon Telescope (EHT) collaboration recently obtained first images of the surroundings of the supermassive compact object M87* at the center of the galaxy M87. Aims. We want to develop a simple analytic disk model for the accretion flow of M87*. Compared to general-relativistic magnetohydrodynamic (GRMHD) models, it has the advantage of being independent of the turbulent character of the flow, and controlled by only few easy-to-interpret, physically meaningful parameters. We want to use this model to predict the image of M87* assuming that it is either a Kerr black hole, or an alternative compact object. Methods. We compute the synchrotron emission from the disk model and propagate the resulting light rays to the far-away observer by means of relativistic ray tracing. Such computations are performed assuming different spacetimes (Kerr, Minkowski, non-rotating ultracompact star, rotating boson star or Lamy spinning wormhole). We perform numerical fits of these models to the EHT data. Results. We discuss the highly-lensed features of Kerr images and show that they are intrinsically linked to the accretion-flow properties, and not only to gravitation. This fact is illustrated by the notion of secondary ring that we introduce. Our model of spinning Kerr black hole predicts mass and orientation consistent with the EHT interpretation. The non-Kerr images result in similar quality of the numerical fits and may appear very similar to Kerr images, once blurred to the EHT resolution. This implies that a strong test of the Kerr spacetime may be out of reach with the current data. We notice that future developments of the EHT could alter this situation. Conclusions. Our results show the importance of studying alternatives to the Kerr spacetime in order to be able to test the Kerr paradigm unambiguously.
In General Relativity, the spacetimes of black holes have three fundamental properties: (i) they are the same, to lowest order in spin, as the metrics of stellar objects; (ii) they are independent of mass, when expressed in geometric units; and (iii) they are described by the Kerr metric. In this paper, we quantify the upper bounds on potential black-hole metric deviations imposed by observations of black-hole shadows and of binary black-hole inspirals in order to explore the current experimental limits on possible violations of the last two predictions. We find that both types of experiments provide correlated constraints on deviation parameters that are primarily in the tt-components of the spacetimes, when expressed in areal coordinates. We conclude that, currently, there is no evidence for a deviations from the Kerr metric across the 8 orders of magnitudes in masses and 16 orders in curvatures spanned by the two types of black holes. Moreover, because of the particular masses of black holes in the current sample of gravitational-wave sources, the correlations imposed by the two experiments are aligned and of similar magnitudes when expressed in terms of the far field, post-Newtonian predictions of the metrics. If a future coalescing black-hole binary with two low-mass (e.g., ~3 Msun) components is discovered, the degeneracy between the deviation parameters can be broken by combining the inspiral constraints with those from the black-hole shadow measurements.
205 - Huan Yang , Haixing Miao , 2012
We formulate a spherical harmonically decomposed 1+1 scheme to self-consistently evolve the trajectory of a point particle and its gravitational metric perturbation to a Schwarzschild background spacetime. Following the work of Moncrief, we write down an action for perturbations in space-time geometry, combine that with the action for a point-particle, and then obtain Hamiltonian equations of motion for metric perturbations, the particles coordinates, as well as their canonical momenta. Hamiltonian equations for the metric-perturbation and their conjugate momenta reduce to Zerilli-Moncrief and Regge-Wheeler master equations with source terms, which are gauge invariant, plus auxiliary equations that specify gauge. Hamiltonian equations for the particle, on the other hand, now include effect of metric perturbations - with these new terms derived from the same interaction Hamiltonian that had lead to those well-known source terms. In this way, space-time geometry and particle motion can be evolved in a self-consistent manner, in principle in any gauge. However, the point-particle nature of our source requires regularization, and we outline how the Detweiler-Whiting approach can be applied. In this approach, a singular field can be obtained using Hadamard decomposition of the Greens function and the regular field, which needs to be evolved numerically, is the result of subtracting the singular field from the total metric perturbation. In principle, any gauge that has the singular-regular field decomposition is suitable for our self-consistent scheme. In reality, however, this freedom is only possible if our singular field has a high enough level of smoothness. In the case of Lorenz gauge, for each l and m, we have 2 wave equations to evolve gauge invariant quantities and 8 first order differential equations to fix the gauge and determine the metric components.
83 - F. Aratore , V. Bozza 2021
Photons emitted by light sources in the neighbourhood of a black hole can wind several times around it before fleeing towards the observer. For spherically symmetric black holes, two infinite sequences of images are created for any given source, asymptotically approaching the shadow border with decreasing magnitude. These sequences are reflected by a characteristic staircase structure in the complex visibility function that may be used to decode the properties of the black hole metric. Recalling the formalism of gravitational lensing in the strong deflection limit, we derive analytical formulae for the height, the width and the periodicities of the steps in the visibility as functions of the black hole parameters for the case of a single compact source. With respect to diffuse emission by the whole accretion flow, this ideal framework provides clean insight and model-independent information on the metric. These basic formulae can then be used to build visibilities for more complicated sources and track the changes induced by alternative metrics and ultimately test General Relativity. As simple examples, we include visibilities for Reissner-Nordstrom and Janis-Newman-Winicour metrics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا