No Arabic abstract
The thermodynamic uncertainty relation (TUR) for underdamped dynamics has intriguing problems while its counterpart for overdamped dynamics has recently been derived. Even for the case of steady states, a proper way to match underdamped and overdamped TURs has not been found. We derive the TUR for underdamped systems subject to general time-dependent protocols, that covers steady states, by using the Cram{e}r-Rao inequality. We show the resultant TUR to give rise to the inequality of the product of the variance and entropy production. We prove it to approach to the known overdamped result for large viscosity limit. We present three examples to confirm our rigorous result.
Recently, it has been shown that there is a trade-off relation between thermodynamic cost and current fluctuations, referred to as the thermodynamic uncertainty relation (TUR). The TUR has been derived for various processes, such as discrete-time Markov jump processes and overdamped Langevin dynamics. For underdamped dynamics, it has recently been reported that some modification is necessary for application of the TUR. In this study, we present a more generalized TUR, applicable to a system driven by a velocity-dependent force in the context of underdamped Langevin dynamics, by extending the theory of Vu and Hasegawa [preprint arXiv:1901.05715]. We show that our TUR accurately describes the trade-off properties of a molecular refrigerator (cold damping), Brownian dynamics in a magnetic field, and an active particle system.
Thermodynamic uncertainty relation (TUR) provides a stricter bound for entropy production (EP) than that of the thermodynamic second law. This stricter bound can be utilized to infer the EP and derive other trade-off relations. Though the validity of the TUR has been verified in various stochastic systems, its application to general Langevin dynamics has not been successful in a unified way, especially for underdamped Langevin dynamics, where odd parity variables in time-reversal operation such as velocity get involved. Previous TURs for underdamped Langevin dynamics is neither experimentally accessible nor reduced to the original form of the overdamped Langevin dynamics in the zero-mass limit. Here, we find an operationally accessible TUR for underdamped Langevin dynamics with an arbitrary time-dependent protocol. We show that the original TUR is a consequence of our underdamped TUR in the zero-mass limit. This indicates that the TUR formulation presented here can be regarded as the universal form of the TUR for general Langevin dynamics. The validity of our result is examined and confirmed for three prototypical underdamped Langevin systems and their zero-mass limits; free diffusion dynamics, charged Brownian particle in a magnetic field, and molecular refrigerator.
For systems in an externally controllable time-dependent potential, the optimal protocol minimizes the mean work spent in a finite-time transition between two given equilibrium states. For overdamped dynamics which ignores inertia effects, the optimal protocol has been found to involve jumps of the control parameter at the beginning and end of the process. Including the inertia term, we show that this feature not only persists but that even delta peak-like changes of the control parameter at both boundaries make the process optimal. These results are obtained by analyzing two simple paradigmatic cases: First, a Brownian particle dragged by a harmonic optical trap through a viscous fluid and, second, a Brownian particle subject to an optical trap with time-dependent stiffness. These insights could be used to improve free energy calculations via either thermodynamic integration or fast growth methods using Jarzynskis equality.
We show that the dissipation rate bounds the rate at which physical processes can be performed in stochastic systems far from equilibrium. Namely, for rare processes we prove the fundamental tradeoff $langle dot S_text{e} rangle mathcal{T} geq k_{text{B}} $ between the entropy flow $langle dot S_text{e} rangle$ into the reservoirs and the mean time $mathcal{T}$ to complete a process. This dissipation-time uncertainty relation is a novel form of speed limit: the smaller the dissipation, the larger the time to perform a process.