Do you want to publish a course? Click here

Efficient Fizeau Drag from Dirac electrons in monolayer graphene

84   0   0.0 ( 0 )
 Added by Wenyu Zhao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fizeau demonstrated in 1850 that the speed of light can be modified when it is propagating in moving media. Can we achieve such control of the light speed efficiently with a fast-moving electron media by passing electrical current? Because the strong electromagnetic coupling between the electron and light leads to the collective excitation of plasmon polaritons, it will manifest as the plasmonic Doppler effect. Experimental observation of the plasmonic Doppler effect in electronic system has been challenge because the plasmon propagation speed is much faster than the electron drift velocity in conventional noble metals. Here, we report direct observation of Fizeau drag of plasmon polaritons in strongly biased graphene by exploiting the high electron mobility and the slow plasmon propagation of massless Dirac electrons. The large bias current in graphene creates a fast drifting Dirac electron medium hosting the plasmon polariton. It results in nonreciprocal plasmon propagation, where plasmons moving with the drifting electron media propagate at an enhanced speed. We measure the Doppler-shifted plasmon wavelength using a cryogenic near-field infrared nanoscopy, which directly images the plasmon polariton mode in the biased graphene at low temperature. We observe a plasmon wavelength difference up to 3.6% between plasmon moving along and against the drifting electron media. Our findings on the plasmonic Doppler effect open new opportunities for electrical control of non-reciprocal surface plasmon polaritons in nonequilibrium systems.



rate research

Read More

132 - Y. Dong , L. Xiong , I.Y. Phinney 2021
Dragging of light by moving dielectrics was predicted by Fresnel and verified by Fizeaus celebrated experiments with flowing water. This momentous discovery is among the experimental cornerstones of Einsteins special relativity and is well understood in the context of relativistic kinematics. In contrast, experiments on dragging photons by an electron flow in solids are riddled with inconsistencies and so far eluded agreement with the theory. Here we report on the electron flow dragging surface plasmon polaritons (SPPs): hybrid quasiparticles of infrared photons and electrons in graphene. The drag is visualized directly through infrared nano-imaging of propagating plasmonic waves in the presence of a high-density current. The polaritons in graphene shorten their wavelength when launched against the drifting carriers. Unlike the Fizeau effect for light, the SPP drag by electrical currents defies the simple kinematics interpretation and is linked to the nonlinear electrodynamics of the Dirac electrons in graphene. The observed plasmonic Fizeau drag enables breaking of time-reversal symmetry and reciprocity at infrared frequencies without resorting to magnetic fields or chiral optical pumping.
We demonstrate the interaction between surface acoustic waves and Dirac electrons in monolayer graphene at low temperatures and high magnetic fields. A metallic interdigitated transducer launches surface waves that propagate through a conventional piezoelectric GaAs substrate and couple to large-scale monolayer CVD graphene films resting on its surface. Based on the induced acousto-electric current, we characterize the frequency domains of the transducer from its first to the third harmonic. We find an oscillatory attenuation of the SAW velocity depending on the conductivity of the graphene layer. The acousto-electric current reveals additional fine structure that is absent in pure magnetotransport. In addition we find a shift between the acousto-electric longitudinal voltage and the velocity change of the SAW. We attribute this shift to the periodic strain field from the propagating SAW that slightly modifies the Dirac cone.
We demonstrate that the intrinsic properties of monolayer graphene allow it to act as a more effective saturable absorber for mode-locking fiber lasers compared to multilayer graphene. The absorption of monolayer graphene can be saturated at lower excitation intensity compared to multilayer graphene, graphene with wrinkle-like defects, and functionalized graphene. Monolayer graphene has a remarkable large modulation depth of 95.3%, whereas the modulation depth of multilayer graphene is greatly reduced due to nonsaturable absorption and scattering loss. Picoseconds ultrafast laser pulse (1.23 ps) can be generated using monolayer graphene as saturable absorber. Due to the ultrafast relaxation time, larger modulation depth and lower scattering loss of monolayer graphene, it performs better than multilayer graphene in terms of pulse shaping ability, pulse stability and output energy.
Strong enhancement of molecular circular dichroism has the potential to enable efficient asymmetric photolysis, a method of chiral separation that has conventionally been impeded by insufficient yield and low enantiomeric excess. Here, we study experimentally how predicted enhancements in optical chirality density near resonant silicon nanodisks boost circular dichroism. We use fluorescence-detected circular dichroism spectroscopy to measure indirectly the differential absorption of circularly polarized light by a monolayer of optically active molecules functionalized to silicon nanodisk arrays. Importantly, the molecules and nanodisk antennas have spectrally-coincident resonances, and our fluorescence technique allows us to deconvolute absorption in the nanodisks from the molecules. We find that enhanced fluorescence-detected circular dichroism signals depend on nanophotonic resonances in good agreement with simulated differential absorption and optical chirality density, while no signal is detected from molecules adsorbed on featureless silicon surfaces. These results verify the potential of nanophotonic platforms to be used for asymmetric photolysis with lower energy requirements
The optical susceptibility is a local, minimally-invasive and spin-selective probe of the ground state of a two-dimensional electron gas. We apply this probe to a gated monolayer of MoS$_2$. We demonstrate that the electrons are spin polarized. Of the four available bands, only two are occupied. These two bands have the same spin but different valley quantum numbers. We argue that strong Coulomb interactions are a key aspect of this spontaneous symmetry breaking. The Bohr radius is so small that even electrons located far apart in phase space interact, facilitating exchange couplings to align the spins.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا