No Arabic abstract
The purpose of an argumentative text is to support a certain conclusion. Yet, they are often omitted, expecting readers to infer them rather. While appropriate when reading an individual text, this rhetorical device limits accessibility when browsing many texts (e.g., on a search engine or on social media). In these scenarios, an explicit conclusion makes for a good candidate summary of an argumentative text. This is especially true if the conclusion is informative, emphasizing specific concepts from the text. With this paper we introduce the task of generating informative conclusions: First, Webis-ConcluGen-21 is compiled, a large-scale corpus of 136,996 samples of argumentative texts and their conclusions. Second, two paradigms for conclusion generation are investigated; one extractive, the other abstractive in nature. The latter exploits argumentative knowledge that augment the data via control codes and finetuning the BART model on several subsets of the corpus. Third, insights are provided into the suitability of our corpus for the task, the differences between the two generation paradigms, the trade-off between informativeness and conciseness, and the impact of encoding argumentative knowledge. The corpus, code, and the trained models are publicly available.
Controlling the model to generate texts of different categories is a challenging task that is getting more and more attention. Recently, generative adversarial net (GAN) has shown promising results in category text generation. However, the texts generated by GANs usually suffer from the problems of mode collapse and training instability. To avoid the above problems, we propose a novel model named category-aware variational recurrent neural network (CatVRNN), which is inspired by multi-task learning. In our model, generation and classification are trained simultaneously, aiming at generating texts of different categories. Moreover, the use of multi-task learning can improve the quality of generated texts, when the classification task is appropriate. And we propose a function to initialize the hidden state of CatVRNN to force model to generate texts of a specific category. Experimental results on three datasets demonstrate that our model can do better than several state-of-the-art text generation methods based GAN in the category accuracy and quality of generated texts.
The advent of large pre-trained language models has made it possible to make high-quality predictions on how to add or change a sentence in a document. However, the high branching factor inherent to text generation impedes the ability of even the strongest language models to offer useful editing suggestions at a more global or document level. We introduce a new task, document sketching, which involves generating entire draft documents for the writer to review and revise. These drafts are built from sets of documents that overlap in form - sharing large segments of potentially reusable text - while diverging in content. To support this task, we introduce a Wikipedia-based dataset of analogous documents and investigate the application of weakly supervised methods, including use of a transformer-based mixture of experts, together with reinforcement learning. We report experiments using automated and human evaluation methods and discuss relative merits of these models.
Existing text generation methods tend to produce repeated and boring expressions. To tackle this problem, we propose a new text generation model, called Diversity-Promoting Generative Adversarial Network (DP-GAN). The proposed model assigns low reward for repeatedly generated text and high reward for novel and fluent text, encouraging the generator to produce diverse and informative text. Moreover, we propose a novel language-model based discriminator, which can better distinguish novel text from repeated text without the saturation problem compared with existing classifier-based discriminators. The experimental results on review generation and dialogue generation tasks demonstrate that our model can generate substantially more diverse and informative text than existing baselines. The code is available at https://github.com/lancopku/DPGAN
In this paper, we compose a new task for deep argumentative structure analysis that goes beyond shallow discourse structure analysis. The idea is that argumentative relations can reasonably be represented with a small set of predefined patterns. For example, using value judgment and bipolar causality, we can explain a support relation between two argumentative segments as follows: Segment 1 states that something is good, and Segment 2 states that it is good because it promotes something good when it happens. We are motivated by the following questions: (i) how do we formulate the task?, (ii) can a reasonable pattern set be created?, and (iii) do the patterns work? To examine the task feasibility, we conduct a three-stage, detailed annotation study using 357 argumentative relations from the argumentative microtext corpus, a small, but highly reliable corpus. We report the coverage of explanations captured by our patterns on a test set composed of 270 relations. Our coverage result of 74.6% indicates that argumentative relations can reasonably be explained by our small pattern set. Our agreement result of 85.9% shows that a reasonable inter-annotator agreement can be achieved. To assist with future work in computational argumentation, the annotated corpus is made publicly available.
When engaging in argumentative discourse, skilled human debaters tailor claims to the beliefs of the audience, to construct effective arguments. Recently, the field of computational argumentation witnessed extensive effort to address the automatic generation of arguments. However, existing approaches do not perform any audience-specific adaptation. In this work, we aim to bridge this gap by studying the task of belief-based claim generation: Given a controversial topic and a set of beliefs, generate an argumentative claim tailored to the beliefs. To tackle this task, we model the peoples prior beliefs through their stances on controversial topics and extend state-of-the-art text generation models to generate claims conditioned on the beliefs. Our automatic evaluation confirms the ability of our approach to adapt claims to a set of given beliefs. In a manual study, we additionally evaluate the generated claims in terms of informativeness and their likelihood to be uttered by someone with a respective belief. Our results reveal the limitations of modeling users beliefs based on their stances, but demonstrate the potential of encoding beliefs into argumentative texts, laying the ground for future exploration of audience reach.