No Arabic abstract
Existing text generation methods tend to produce repeated and boring expressions. To tackle this problem, we propose a new text generation model, called Diversity-Promoting Generative Adversarial Network (DP-GAN). The proposed model assigns low reward for repeatedly generated text and high reward for novel and fluent text, encouraging the generator to produce diverse and informative text. Moreover, we propose a novel language-model based discriminator, which can better distinguish novel text from repeated text without the saturation problem compared with existing classifier-based discriminators. The experimental results on review generation and dialogue generation tasks demonstrate that our model can generate substantially more diverse and informative text than existing baselines. The code is available at https://github.com/lancopku/DPGAN
Neural conversational models learn to generate responses by taking into account the dialog history. These models are typically optimized over the query-response pairs with a maximum likelihood estimation objective. However, the query-response tuples are naturally loosely coupled, and there exist multiple responses that can respond to a given query, which leads the conversational model learning burdensome. Besides, the general dull response problem is even worsened when the model is confronted with meaningless response training instances. Intuitively, a high-quality response not only responds to the given query but also links up to the future conversations, in this paper, we leverage the query-response-future turn triples to induce the generated responses that consider both the given context and the future conversations. To facilitate the modeling of these triples, we further propose a novel encoder-decoder based generative adversarial learning framework, Posterior Generative Adversarial Network (Posterior-GAN), which consists of a forward and a backward generative discriminator to cooperatively encourage the generated response to be informative and coherent by two complementary assessment perspectives. Experimental results demonstrate that our method effectively boosts the informativeness and coherence of the generated response on both automatic and human evaluation, which verifies the advantages of considering two assessment perspectives.
In this paper, we focus on the task of generating a pun sentence given a pair of word senses. A major challenge for pun generation is the lack of large-scale pun corpus to guide the supervised learning. To remedy this, we propose an adversarial generative network for pun generation (Pun-GAN), which does not require any pun corpus. It consists of a generator to produce pun sentences, and a discriminator to distinguish between the generated pun sentences and the real sentences with specific word senses. The output of the discriminator is then used as a reward to train the generator via reinforcement learning, encouraging it to produce pun sentences that can support two word senses simultaneously. Experiments show that the proposed Pun-GAN can generate sentences that are more ambiguous and diverse in both automatic and human evaluation.
Text generation is of particular interest in many NLP applications such as machine translation, language modeling, and text summarization. Generative adversarial networks (GANs) achieved a remarkable success in high quality image generation in computer vision,and recently, GANs have gained lots of interest from the NLP community as well. However, achieving similar success in NLP would be more challenging due to the discrete nature of text. In this work, we introduce a method using knowledge distillation to effectively exploit GAN setup for text generation. We demonstrate how autoencoders (AEs) can be used for providing a continuous representation of sentences, which is a smooth representation that assign non-zero probabilities to more than one word. We distill this representation to train the generator to synthesize similar smooth representations. We perform a number of experiments to validate our idea using different datasets and show that our proposed approach yields better performance in terms of the BLEU score and Jensen-Shannon distance (JSD) measure compared to traditional GAN-based text generation approaches without pre-training.
Sequence-to-sequence models provide a viable new approach to generative summarization, allowing models that are no longer limited to simply selecting and recombining sentences from the original text. However, these models have three drawbacks: their grasp of the details of the original text is often inaccurate, and the text generated by such models often has repetitions, while it is difficult to handle words that are beyond the word list. In this paper, we propose a new architecture that combines reinforcement learning and adversarial generative networks to enhance the sequence-to-sequence attention model. First, we use a hybrid pointer-generator network that copies words directly from the source text, contributing to accurate reproduction of information without sacrificing the ability of generators to generate new words. Second, we use both intra-temporal and intra-decoder attention to penalize summarized content and thus discourage repetition. We apply our model to our own proposed COVID-19 paper title summarization task and achieve close approximations to the current model on ROUEG, while bringing better readability.
In this work, we present the Text Conditioned Auxiliary Classifier Generative Adversarial Network, (TAC-GAN) a text to image Generative Adversarial Network (GAN) for synthesizing images from their text descriptions. Former approaches have tried to condition the generative process on the textual data; but allying it to the usage of class information, known to diversify the generated samples and improve their structural coherence, has not been explored. We trained the presented TAC-GAN model on the Oxford-102 dataset of flowers, and evaluated the discriminability of the generated images with Inception-Score, as well as their diversity using the Multi-Scale Structural Similarity Index (MS-SSIM). Our approach outperforms the state-of-the-art models, i.e., its inception score is 3.45, corresponding to a relative increase of 7.8% compared to the recently introduced StackGan. A comparison of the mean MS-SSIM scores of the training and generated samples per class shows that our approach is able to generate highly diverse images with an average MS-SSIM of 0.14 over all generated classes.