No Arabic abstract
Sophisticated trajectory prediction models that effectively mimic team dynamics have many potential uses for sports coaches, broadcasters and spectators. However, through experiments on soccer data we found that it can be surprisingly challenging to train a deep learning model for player trajectory prediction which outperforms linear extrapolation on average distance between predicted and true future trajectories. We propose and test a novel method for improving training by predicting a sparse trajectory and interpolating using constant acceleration, which improves performance for several models. This interpolation can also be used on models that arent trained with sparse outputs, and we find that this consistently improves performance for all tested models. Additionally, we find that the accuracy of predicted trajectories for a subset of players can be improved by conditioning on the full trajectories of the other players, and that this is further improved when combined with sparse predictions. We also propose a novel architecture using graph networks and multi-head attention (GraN-MA) which achieves better performance than other tested state-of-the-art models on our dataset and is trivially adapted for both sparse trajectories and full-trajectory conditioned trajectory prediction.
This work investigates the framework and performance issues of the composite neural network, which is composed of a collection of pre-trained and non-instantiated neural network models connected as a rooted directed acyclic graph for solving complicated applications. A pre-trained neural network model is generally well trained, targeted to approximate a specific function. Despite a general belief that a composite neural network may perform better than a single component, the overall performance characteristics are not clear. In this work, we construct the framework of a composite network, and prove that a composite neural network performs better than any of its pre-trained components with a high probability bound. In addition, if an extra pre-trained component is added to a composite network, with high probability, the overall performance will not be degraded. In the study, we explore a complicated application -- PM2.5 prediction -- to illustrate the correctness of the proposed composite network theory. In the empirical evaluations of PM2.5 prediction, the constructed composite neural network models support the proposed theory and perform better than other machine learning models, demonstrate the advantages of the proposed framework.
Trajectory owner prediction is the basis for many applications such as personalized recommendation, urban planning. Although much effort has been put on this topic, the results archived are still not good enough. Existing methods mainly employ RNNs to model trajectories semantically due to the inherent sequential attribute of trajectories. However, these approaches are weak at Point of Interest (POI) representation learning and trajectory feature detection. Thus, the performance of existing solutions is far from the requirements of practical applications. In this paper, we propose a novel CNN-based Trajectory Owner Prediction (CNNTOP) method. Firstly, we connect all POI according to trajectories from all users. The result is a connected graph that can be used to generate more informative POI sequences than other approaches. Secondly, we employ the Node2Vec algorithm to encode each POI into a low-dimensional real value vector. Then, we transform each trajectory into a fixed-dimensional matrix, which is similar to an image. Finally, a CNN is designed to detect features and predict the owner of a given trajectory. The CNN can extract informative features from the matrix representations of trajectories by convolutional operations, Batch normalization, and $K$-max pooling operations. Extensive experiments on real datasets demonstrate that CNNTOP substantially outperforms existing solutions in terms of macro-Precision, macro-Recall, macro-F1, and accuracy.
We present CoverNet, a new method for multimodal, probabilistic trajectory prediction for urban driving. Previous work has employed a variety of methods, including multimodal regression, occupancy maps, and 1-step stochastic policies. We instead frame the trajectory prediction problem as classification over a diverse set of trajectories. The size of this set remains manageable due to the limited number of distinct actions that can be taken over a reasonable prediction horizon. We structure the trajectory set to a) ensure a desired level of coverage of the state space, and b) eliminate physically impossible trajectories. By dynamically generating trajectory sets based on the agents current state, we can further improve our methods efficiency. We demonstrate our approach on public, real-world self-driving datasets, and show that it outperforms state-of-the-art methods.
Simulation of the real-world traffic can be used to help validate the transportation policies. A good simulator means the simulated traffic is similar to real-world traffic, which often requires dense traffic trajectories (i.e., with a high sampling rate) to cover dynamic situations in the real world. However, in most cases, the real-world trajectories are sparse, which makes simulation challenging. In this paper, we present a novel framework ImInGAIL to address the problem of learning to simulate the driving behavior from sparse real-world data. The proposed architecture incorporates data interpolation with the behavior learning process of imitation learning. To the best of our knowledge, we are the first to tackle the data sparsity issue for behavior learning problems. We investigate our framework on both synthetic and real-world trajectory datasets of driving vehicles, showing that our method outperforms various baselines and state-of-the-art methods.
Probabilistic vehicle trajectory prediction is essential for robust safety of autonomous driving. Current methods for long-term trajectory prediction cannot guarantee the physical feasibility of predicted distribution. Moreover, their models cannot adapt to the driving policy of the predicted target human driver. In this work, we propose to overcome these two shortcomings by a Bayesian recurrent neural network model consisting of Bayesian-neural-network-based policy model and known physical model of the scenario. Bayesian neural network can ensemble complicated output distribution, enabling rich family of trajectory distribution. The embedded physical model ensures feasibility of the distribution. Moreover, the adopted gradient-based training method allows direct optimization for better performance in long prediction horizon. Furthermore, a particle-filter-based parameter adaptation algorithm is designed to adapt the policy Bayesian neural network to the predicted target online. Effectiveness of the proposed methods is verified with a toy example with multi-modal stochastic feedback gain and naturalistic car following data.