Do you want to publish a course? Click here

Adaptive Probabilistic Vehicle Trajectory Prediction Through Physically Feasible Bayesian Recurrent Neural Network

80   0   0.0 ( 0 )
 Added by Chen Tang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Probabilistic vehicle trajectory prediction is essential for robust safety of autonomous driving. Current methods for long-term trajectory prediction cannot guarantee the physical feasibility of predicted distribution. Moreover, their models cannot adapt to the driving policy of the predicted target human driver. In this work, we propose to overcome these two shortcomings by a Bayesian recurrent neural network model consisting of Bayesian-neural-network-based policy model and known physical model of the scenario. Bayesian neural network can ensemble complicated output distribution, enabling rich family of trajectory distribution. The embedded physical model ensures feasibility of the distribution. Moreover, the adopted gradient-based training method allows direct optimization for better performance in long prediction horizon. Furthermore, a particle-filter-based parameter adaptation algorithm is designed to adapt the policy Bayesian neural network to the predicted target online. Effectiveness of the proposed methods is verified with a toy example with multi-modal stochastic feedback gain and naturalistic car following data.



rate research

Read More

With the increasing deployment of diverse positioning devices and location-based services, a huge amount of spatial and temporal information has been collected and accumulated as trajectory data. Among many applications, trajectory-based location prediction is gaining increasing attention because of its potential to improve the performance of many applications in multiple domains. This research focuses on trajectory sequence prediction methods using trajectory data obtained from the vehicles in urban traffic network. As Recurrent Neural Network(RNN) model is previously proposed, we propose an improved method of Attention-based Recurrent Neural Network model(ARNN) for urban vehicle trajectory prediction. We introduce attention mechanism into urban vehicle trajectory prediction to explain the impact of network-level traffic state information. The model is evaluated using the Bluetooth data of private vehicles collected in Brisbane, Australia with 5 metrics which are widely used in the sequence modeling. The proposed ARNN model shows significant performance improvement compared to the existing RNN models considering not only the cells to be visited but also the alignment of the cells in sequence.
In this paper, we study the problem of using representation learning to assist information diffusion prediction on graphs. In particular, we aim at estimating the probability of an inactive node to be activated next in a cascade. Despite the success of recent deep learning methods for diffusion, we find that they often underexplore the cascade structure. We consider a cascade as not merely a sequence of nodes ordered by their activation time stamps; instead, it has a richer structure indicating the diffusion process over the data graph. As a result, we introduce a new data model, namely diffusion topologies, to fully describe the cascade structure. We find it challenging to model diffusion topologies, which are dynamic directed acyclic graphs (DAGs), with the existing neural networks. Therefore, we propose a novel topological recurrent neural network, namely Topo-LSTM, for modeling dynamic DAGs. We customize Topo-LSTM for the diffusion prediction task, and show it improves the state-of-the-art baselines, by 20.1%--56.6% (MAP) relatively, across multiple real-world data sets. Our code and data sets are available online at https://github.com/vwz/topolstm.
119 - Yiwen Sun , Yulu Wang , Kun Fu 2020
Considering deep sequence learning for practical application, two representative RNNs - LSTM and GRU may come to mind first. Nevertheless, is there no chance for other RNNs? Will there be a better RNN in the future? In this work, we propose a novel, succinct and promising RNN - Fusion Recurrent Neural Network (Fusion RNN). Fusion RNN is composed of Fusion module and Transport module every time step. Fusion module realizes the multi-round fusion of the input and hidden state vector. Transport module which mainly refers to simple recurrent network calculate the hidden state and prepare to pass it to the next time step. Furthermore, in order to evaluate Fusion RNNs sequence feature extraction capability, we choose a representative data mining task for sequence data, estimated time of arrival (ETA) and present a novel model based on Fusion RNN. We contrast our method and other variants of RNN for ETA under massive vehicle travel data from DiDi Chuxing. The results demonstrate that for ETA, Fusion RNN is comparable to state-of-the-art LSTM and GRU which are more complicated than Fusion RNN.
The Nonlinear autoregressive exogenous (NARX) model, which predicts the current value of a time series based upon its previous values as well as the current and past values of multiple driving (exogenous) series, has been studied for decades. Despite the fact that various NARX models have been developed, few of them can capture the long-term temporal dependencies appropriately and select the relevant driving series to make predictions. In this paper, we propose a dual-stage attention-based recurrent neural network (DA-RNN) to address these two issues. In the first stage, we introduce an input attention mechanism to adaptively extract relevant driving series (a.k.a., input features) at each time step by referring to the previous encoder hidden state. In the second stage, we use a temporal attention mechanism to select relevant encoder hidden states across all time steps. With this dual-stage attention scheme, our model can not only make predictions effectively, but can also be easily interpreted. Thorough empirical studies based upon the SML 2010 dataset and the NASDAQ 100 Stock dataset demonstrate that the DA-RNN can outperform state-of-the-art methods for time series prediction.
We study probabilistic safety for Bayesian Neural Networks (BNNs) under adversarial input perturbations. Given a compact set of input points, $T subseteq mathbb{R}^m$, we study the probability w.r.t. the BNN posterior that all the points in $T$ are mapped to the same region $S$ in the output space. In particular, this can be used to evaluate the probability that a network sampled from the BNN is vulnerable to adversarial attacks. We rely on relaxation techniques from non-convex optimization to develop a method for computing a lower bound on probabilistic safety for BNNs, deriving explicit procedures for the case of interval and linear function propagation techniques. We apply our methods to BNNs trained on a regression task, airborne collision avoidance, and MNIST, empirically showing that our approach allows one to certify probabilistic safety of BNNs with millions of parameters.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا