Do you want to publish a course? Click here

InAs nanocrystals with robust p-type doping

71   0   0.0 ( 0 )
 Added by Uri Banin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Robust control over the carrier type is fundamental for the fabrication of nanocrystal-based optoelectronic devices, such as the p-n homojunction, but effective incorporation of impurities in semiconductor nanocrystals and its characterization is highly challenging due to their small size. Herein, InAs nanocrystals, post-synthetically doped with Cd, serve as a model system for successful p-type doping of originally n-type InAs nanocrystals, as demonstrated in field-effect transistors (FETs). Advanced structural analysis, using atomic resolution electron microscopy and synchrotron X-ray absorption fine structure spectroscopy reveal that Cd impurities reside near and on the nanocrystal surface acting as substitutional p-dopants replacing Indium. Commensurately, Cd-doped InAs FETs exhibited remarkable stability of their hole conduction, mobility, and hysteretic behavior over time when exposed to air, while intrinsic InAs NCs FETs were easily oxidized and their performance quickly declined. Therefore, Cd plays a dual role acting as a p-type dopant, and also protects the nanocrystals from oxidation, as evidenced directly by Xray photoelectron spectroscopy measurements of air-exposed samples of intrinsic and Cd doped InAs NCs films. This study demonstrates robust p-type doping of InAs nanocrystals, setting the stage for implementation of such doped nanocrystal systems in printed electronic devices.



rate research

Read More

Tuning of the electronic properties of pre-synthesized colloidal semiconductor nanocrystals (NCs) by doping plays a key role in the prospect of implementing them in printed electronics devices such as transistors, and photodetectors. While such impurity doping reactions have already been introduced, the understanding of the doping process, the nature of interaction between the impurity and host atoms, and the conditions affecting the solubility limit of impurities in nanocrystals are still unclear. Here, we used a post-synthesis diffusion based doping reaction to introduce Ag impurities into InAs NCs. Optical absorption spectroscopy along with analytical inductively coupled plasma mass-spectroscopy (ICP-MS) were used to present a two stage doping model consisting of a doping region and a growth region, depending on the concentration of the impurities in the reaction vessel. X-ray absorption fine-structure (XAFS) spectroscopy was employed to determine the impurity location and correlate between the structural and electronic properties for different sizes of InAs NCs and dopant concentrations. The resulting structural model describes a heterogeneous system where the impurities initially dope the NC, by substituting for In atoms near the surface of the NC, until the solubility limit is reached, after which the rapid growth and formation of metallic structures are identified.
Scalable substitutional doping of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is a prerequisite to developing next-generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, we report scalable growth and vanadium (V) doping of 2D WSe2 at front-end-of-line (FEOL) and back-end-of-line (BEOL) compatible temperatures of 800 {deg}C and 400 {deg}C, respectively. A combination of experimental and theoretical studies confirm that vanadium atoms substitutionally replace tungsten in WSe2, which results in p-type doping via the introduction of discrete defect levels that lie close to the valence band maxima. The p-type nature of the V dopants is further verified by constructed field-effect transistors, where hole conduction becomes dominant with increasing vanadium concentration. Hence, our study presents a method to precisely control the density of intentionally introduced impurities, which is indispensable in the production of electronic-grade wafer-scale extrinsic 2D semiconductors.
GeO$_2$ has an $alpha$-quartz-type crystal structure with a very wide fundamental band gap of 6.6 eV and is a good insulator. Here we find that the stable rutile-GeO$_2$ polymorph with a 4.6 eV band gap has a surprisingly low $sim$6.8 eV ionization potential, as predicted from the band alignment using first-principles calculations. Because of the short O$-$O distances in the rutile structure containing cations of small effective ionic radii such as Ge$^{4+}$, the antibonding interaction between O 2p orbitals raises the valence band maximum energy level to an extent that hole doping appears feasible. Experimentally, we report the flux growth of $1.5 times 1.0 times 0.8$ mm$^3$ large rutile GeO$_2$ single crystals and confirm the thermal stability for temperatures up to $1021 pm 10~^circ$C. X-ray fluorescence spectroscopy shows the inclusion of unintentional Mo impurities from the Li$_2$O$-$MoO$_3$ flux, as well as the solubility of Ga in the r-GeO$_2$ lattice as a prospective acceptor dopant. The resistance of the Ga- and Mo-codoped r-GeO$_2$ single crystals is very high at room temperature, but it decreases by 2-3 orders of magnitude upon heating to 300 $^circ$C, which is attributed to thermally-activated p-type conduction.
N-type Bi100-xSbx alloys have the highest thermoelectric figure of merit (zT) of all materials below 200K; here we investigate how filling multiple valence band pockets at T and H-points of the Brillouin zone produces high zT in p-type Sn-doped material. This approach, theoretically predicted to potentially give zT>1 in Bi, was used successfully in PbTe. We report thermopower, electrical and thermal conductivity (2 to 400K) of single crystals with 12<x<37 and polycrystals (x=50-90), higher Sb concentrations than previous studies. We obtain a 60% improvement in zT to 0.13.
We have investigated in-situ Si doping of InAs nanowires grown by molecular beam epitaxy from gold seeds. The effectiveness of n-type doping is confirmed by electrical measurements showing an increase of the electron density with the Si flux. We also observe an increase of the electron density along the nanowires from the tip to the base, attributed to the dopant incorporation on the nanowire facets whereas no detectable incorporation occurs through the seed. Furthermore the Si incorporation strongly influences the lateral growth of the nanowires without giving rise to significant tapering, revealing the complex interplay between axial and lateral growth.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا