No Arabic abstract
The interplay between magnetism and topological electronic structure offers a large freedom to design strong anomalous Hall effect (AHE) materials. A nodal line from band inversion is a typical band structure to generate strong AHE. Whereas, in most collinear antiferromagnets (AFMs), the integration of Berry curvatures on Brillouin zone is forced to zero by the joint $TO$ symmetry, where $T$ and $O$ are time reversal and a space group operation, respectively. Even with inverted band structures, such kind of AFM cannot have AHE. Therefore, so far, AFM nodal line band structures constructed by spin degenerated bands didnt get much attentions in AHE materials. In this work, we illustrate that such kind of band structure indeed provides a promising starting point to generated strong local Berry curvature by perturbations and, therefore, strong intrinsic AHE. In specific AFM compounds of $A$MnBi$_2$($A$=Ca and Yb) with inverted band structure, we found a strong AHE induced by a weak spin canting, and due to nodal line in the band structure the anomalous Hall conductivity keeps growing as the canting angle increases. Since such spin-canting can be adjusted via doping experimentally, it provides another effective strategy to generate and manipulate strong AHE
Anomalous valley Hall (AVH) effect is a fundamental transport phenomenon in the field of condensed-matter physics. Usually, the research on AVH effect is mainly focused on 2D lattices with ferromagnetic order. Here, by means of model analysis, we present a general design principle for realizing AVH effect in antiferromagnetic monolayers, which involves the introduction of nonequilibrium potentials to break of PT symmetry. Using first-principles calculations, we further demonstrate this design principle by stacking antiferromagnetic monolayer MnPSe3 on ferroelectric monolayer Sc2CO2 and achieve the AVH effect. The AVH effect can be well controlled by modulating the stacking pattern. In addition, by reversing the ferroelectric polarization of Sc2CO2 via electric field, the AVH effect in monolayer MnPSe3 can be readily switched on or off. The underlying physics are revealed in detail. Our findings open up a new direction of research on exploring AVH effect.
The spin Hall magnetoresistance (SMR) and anomalous Hall effect (AHE) are observed in a Cr2O3/Ta structure. The structural and surface morphology of Cr2O3/Ta bilayers have been investigated. Temperature dependence of longitudinal and transverse resistances measurements confirm the relationship between SMR and AHE signals in Cr2O3/Ta structure. By means of temperature dependent magnetoresistance measurements, the physical origin of SMR in the Cr2O3/Ta structure is revealed, and the contribution to the SMR from the spin current generated by AHE has been proved. The so-called boundary magnetization due to the bulk antiferromagnetic order in Cr2O3 film may be responsible for the relationship of SMR and AHE in the Cr2O3/Ta bilayer.
We report a combined theoretical and experimental investigation of magnetic proximity and Hall transport in Pt/Cr bilayers. Density functional theory indicates that an interfacial magnetization can be induced in the Pt layer and a strong magnetocrystalline anisotropy with an easy axis out of plane arises in the antiferromagnet. A signal ascribed to the anomalous Hall effect is detected and associated to the interface between Pt and Cr layers. We show that this effect originates from the combination of proximity-induced magnetization and a nontrivial topology of the band structure at the interface.
Magnetotransport is at the center of the spintronics. Mn3Sn, an antiferromagnet that has a noncollinear 120{deg} spin order, exhibits large anomalous Hall effect (AHE) at room temperature. But such a behavior has been remained elusive in Mn3Sn films. Here we report the observation of robust AHE up to room temperature in quasi-epitaxial Mn3Sn thin films, prepared by magnetron sputtering. The growth of both (11-20)- and (0001)-oriented Mn3Sn films provides a unique opportunity for comparing AHE in three different measurement configurations. When the magnetic field is swept along (0001) plane, such as the direction of [01-10] and [2-1-10] the films show comparatively higher anomalous Hall conductivity than its perpendicular counterpart ([0001]), irrespective of their respectively orthogonal current along [0001] or [01-10]. A quite weak ferromagnetic moment of 3 emu/cm^3 is obtained in (11-20)-oriented Mn3Sn films, guaranteeing the switching of the Hall signals with magnetization reversal. Our finding would advance the integration of Mn3Sn in antiferromagnetic spintronics.
The nontrivial band structure of semimetals has attracted substantial research attention in condensed matter physics and materials science in recent years owing to its intriguing physical properties. Within this class, a group of non-trivial materials known as nodal-line semimetals is particularly important. Nodal-line semimetals exhibit the potential effects of electronic correlation in nonmagnetic materials, whereas they enhance the contribution of the Berry curvature in magnetic materials, resulting in high anomalous Hall conductivity (AHC). In this study, two ferromagnetic compounds, namely ZrMnP and HfMnP, are selected, wherein the abundance of mirror planes in the crystal structure ensures gapped nodal lines at the Fermi energy. These nodal lines result in one of the largest AHC values of 2840 ohm^-1cm^-1, with a high anomalous Hall angle of 13.6 % in these compounds. First-principles calculations provide a clear and detailed understanding of nodal line-enhanced AHC. Our finding suggests a guideline for searching large AHC compounds.