No Arabic abstract
We define bulk/boundary maps corresponding to quantum gravity states in the tensorial group field theory formalism, for quantum geometric models sharing the same type of quantum states of loop quantum gravity. The maps are defined in terms of a partition of the quantum geometric data associated to an open graph into bulk and boundary ones, in the spin representation. We determine the general condition on the entanglement structure of the state that makes the bulk/boundary map isometric (a necessary condition for holographic behaviour), and we analyse different types of quantum states, identifying those that define isometric bulk/boundary maps.
We study the holographic superconductor-normal metal-superconductor (SNS) Josephon junction in the massive gravity. In the homogeneous case of the chemical potential, we find that the graviton mass will make the normal metal-superconductor phase transition harder to take place. In the holographic model of Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass. Besides, the coherence length of the junction decreases as well with respect to the graviton mass. If one interprets the graviton mass as the effect of momentum dissipation in the boundary field theory, it indicates that the stronger the momentum dissipation is, the smaller the coherence length is.
We propose dual thermodynamics corresponding to black hole mechanics with the identifications E -> A/4, S -> M, and T -> 1/T in Planck units. Here A, M and T are the horizon area, mass and Hawking temperature of a black hole and E, S and T are the energy, entropy and temperature of a corresponding dual quantum system. We show that, for a Schwarzschild black hole, the dual variables formally satisfy all three laws of thermodynamics, including the Planck-Nernst form of the third law requiring that the entropy tend to zero at low temperature. This is in contrast with traditional black hole thermodynamics, where the entropy is singular. Once the third law is satisfied, it is straightforward to construct simple (dual) quantum systems representing black hole mechanics. As an example, we construct toy models from one dimensional (Fermi or Bose) quantum gases with N ~ M in a Planck scale box. In addition to recovering black hole mechanics, we obtain quantum corrections to the entropy, including the logarithmic correction obtained by previous papers. The energy-entropy duality transforms a strongly interacting gravitational system (black hole) into a weakly interacting quantum system (quantum gas) and thus provides a natural framework for the quantum statistics underlying the holographic conjecture.
We introduce group field theory networks as a generalization of spin networks and of (symmetric) random tensor networks and provide a statistical computation of the Renyi entropy for a bipartite network state using the partition function of a simple interacting group field theory. The expectation value of the entanglement entropy is calculated by an expansion into stranded Feynman graphs and is shown to be captured by a Ryu- Takayanagi formula. For a simple interacting group field theory, we can prove the linear corrections, given by a polynomial perturbation of the Gaussian measure, to be negligible for a broad class of networks.
The formalism of Holographic Space-time (HST) is a translation of the principles of Lorentzian geometry into the language of quantum information. Intervals along time-like trajectories, and their associated causal diamonds, completely characterize a Lorentzian geometry. The Bekenstein-Hawking-Gibbons-t Hooft-Jacobson-Fischler-Susskind-Bousso Covariant Entropy Principle, equates the logarithm of the dimension of the Hilbert space associated with a diamond to one quarter of the area of the diamonds holographic screen, measured in Planck units. The most convincing argument for this principle is Jacobsons derivation of Einsteins equations as the hydrodynamic expression of this entropy law. In that context, the null energy condition (NEC) is seen to be the analog of the local law of entropy increase. The quantum version of Einsteins relativity principle is a set of constraints on the mutual quantum information shared by causal diamonds along different time-like trajectories. The implementation of this constraint for trajectories in relative motion is the greatest unsolved problem in HST. The other key feature of HST is its claim that, for non-negative cosmological constant or causal diamonds much smaller than the asymptotic radius of curvature for negative c.c., the degrees of freedom localized in the bulk of a diamond are constrained states of variables defined on the holographic screen. This principle gives a simple explanation of otherwise puzzling features of BH entropy formulae, and resolves the firewall problem for black holes in Minkowski space. It motivates a covariant version of the CKNcite{ckn} bound on the regime of validity of quantum field theory (QFT) and a detailed picture of the way in which QFT emerges as an approximation to the exact theory.
We propose a method to holographically compute the conformal partial waves in any decomposition of correlation functions of primary operators in conformal field theories using open Wilson network operators in the holographic gravitational dual. The Wilson operators are the gravitational ones where gravity is written as a gauge theory in the first order Hilbert-Palatini formalism. We apply this method to compute the global conformal blocks and partial waves in 2d CFTs reproducing many of the known results.