No Arabic abstract
The formalism of Holographic Space-time (HST) is a translation of the principles of Lorentzian geometry into the language of quantum information. Intervals along time-like trajectories, and their associated causal diamonds, completely characterize a Lorentzian geometry. The Bekenstein-Hawking-Gibbons-t Hooft-Jacobson-Fischler-Susskind-Bousso Covariant Entropy Principle, equates the logarithm of the dimension of the Hilbert space associated with a diamond to one quarter of the area of the diamonds holographic screen, measured in Planck units. The most convincing argument for this principle is Jacobsons derivation of Einsteins equations as the hydrodynamic expression of this entropy law. In that context, the null energy condition (NEC) is seen to be the analog of the local law of entropy increase. The quantum version of Einsteins relativity principle is a set of constraints on the mutual quantum information shared by causal diamonds along different time-like trajectories. The implementation of this constraint for trajectories in relative motion is the greatest unsolved problem in HST. The other key feature of HST is its claim that, for non-negative cosmological constant or causal diamonds much smaller than the asymptotic radius of curvature for negative c.c., the degrees of freedom localized in the bulk of a diamond are constrained states of variables defined on the holographic screen. This principle gives a simple explanation of otherwise puzzling features of BH entropy formulae, and resolves the firewall problem for black holes in Minkowski space. It motivates a covariant version of the CKNcite{ckn} bound on the regime of validity of quantum field theory (QFT) and a detailed picture of the way in which QFT emerges as an approximation to the exact theory.
In this paper, we will analyze the connection between the fidelity susceptibility, the holographic complexity and the thermodynamic volume. We will regularize the fidelity susceptibility and the holographic complexity by subtracting the contribution of the background AdS spacetime from the deformation of the AdS spacetime. It will be demonstrated that this regularized fidelity susceptibility has the same behavior as the thermodynamic volume and that the regularized complexity has a very different behavior. As the information dual to different volumes in the bulk would be measured by the fidelity susceptibility and the holographic complexity, this paper will establish a connection between thermodynamics and information dual to a volume.
We extend previous work on the numerical diagonalization of quantum stress tensor operators in the Minkowski vacuum state, which considered operators averaged in a finite time interval, to operators averaged in a finite spacetime region. Since real experiments occur over finite volumes and durations, physically meaningful fluctuations may be obtained from stress tensor operators averaged by compactly supported sampling functions in space and time. The direct diagonalization, via a Bogoliubov transformation, gives the eigenvalues and the probabilities of measuring those eigenvalues in the vacuum state, from which the underlying probability distribution can be constructed. For the normal-ordered square of the time derivative of a massless scalar field in a spherical cavity with finite degrees of freedom, analysis of the tails of these distributions confirms previous results based on the analytical treatment of the high moments. We find that the probability of large vacuum fluctuations is reduced when spatial averaging is included, but the tail still decreases more slowly than exponentially as the magnitude of the measured eigenvalues increases, suggesting vacuum fluctuations may not always be subdominant to thermal fluctuations and opening up the possibility of experimental observation under the right conditions.
Quantum states with geometric duals are known to satisfy a stricter set of entropy inequalities than those obeyed by general quantum systems. The set of allowed entropies derived using the Ryu-Takayanagi (RT) formula defines the Holographic Entropy Cone (HEC). These inequalities are no longer satisfied once general quantum corrections are included by employing the Quantum Extremal Surface (QES) prescription. Nevertheless, the structure of the QES formula allows for a controlled study of how quantum contributions from bulk entropies interplay with HEC inequalities. In this paper, we initiate an exploration of this problem by relating bulk entropy constraints to boundary entropy inequalities. In particular, we show that requiring the bulk entropies to satisfy the HEC implies that the boundary entropies also satisfy the HEC. Further, we also show that requiring the bulk entropies to obey monogamy of mutual information (MMI) implies the boundary entropies also obey MMI.
It is shown how the characteristic thermal effects that observers experience in space-times possessing an event horizon can manifest already in a simple quantum system with affine symmetry living on the real line. The derivation presented is essentially group theoretic in nature: a thermal state emerges naturally when comparing different representations of the group of affine transformations of the real line. The freedom in the choice of different notions of translation generators is the key to the Unruh effect on a line we describe.
In this work quantum physics in noncommutative spacetime is developed. It is based on the work of Doplicher et al. which allows for time-space noncommutativity. The Moyal plane is treated in detail. In the context of noncommutative quantum mechanics, some important points are explored, such as the formal construction of the theory, symmetries, causality, simultaneity and observables. The dynamics generated by a noncommutative Schrodinger equation is studied. We prove in particular the following: suppose the Hamiltonian of a quantum mechanical particle on spacetime has no explicit time dependence, and the spatial coordinates commute in its noncommutative form (the only noncommutativity being between time and a space coordinate). Then the commutative and noncommutati