Do you want to publish a course? Click here

Holographic Josephson Junction from Massive Gravity

234   0   0.0 ( 0 )
 Added by Huaifan Li
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the holographic superconductor-normal metal-superconductor (SNS) Josephon junction in the massive gravity. In the homogeneous case of the chemical potential, we find that the graviton mass will make the normal metal-superconductor phase transition harder to take place. In the holographic model of Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass. Besides, the coherence length of the junction decreases as well with respect to the graviton mass. If one interprets the graviton mass as the effect of momentum dissipation in the boundary field theory, it indicates that the stronger the momentum dissipation is, the smaller the coherence length is.



rate research

Read More

Recently, a practical approach to holographic renormalization has been developed based on the Hamilton-Jacobi formulation. Using a simple Einstein-scalar theory, we clarify that this approach does not conflict with the Hamiltonian constraint as it seems. Then we apply it to the holographic renormalization of massive gravity. We assume that the shift vector is falling off fast enough asymptotically. We derive the counterterms up to the boundary dimension d=4. Interestingly, we find that the conformal anomaly can even occur in odd dimensions, which is different from the Einstein gravity. We check that the counterterms cancel the divergent part of the on-shell action at the background level. At the perturbation level, they are also applicable in several time-dependent cases.
We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham-Gabadadze-Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Minsner-Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.
We define bulk/boundary maps corresponding to quantum gravity states in the tensorial group field theory formalism, for quantum geometric models sharing the same type of quantum states of loop quantum gravity. The maps are defined in terms of a partition of the quantum geometric data associated to an open graph into bulk and boundary ones, in the spin representation. We determine the general condition on the entanglement structure of the state that makes the bulk/boundary map isometric (a necessary condition for holographic behaviour), and we analyse different types of quantum states, identifying those that define isometric bulk/boundary maps.
A ghost free massive deformation of unimodular gravity (UG), in the spirit of {em mimetic massive gravity}, is shown to exist. This construction avoids the no-go theorem for a Fierz-Pauli type of mass term in UG by giving up on Lorentz invariance. In our framework, the mimetic degree of freedom vanishes on-shell.
In this paper, we investigate the AC charge transport in the holographic Horndeski gravity and identify a metal-semiconductor like transition that is driven by the Horndeski coupling. Moreover, we fit our numeric data by the Drude formula in slow relaxation cases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا