Do you want to publish a course? Click here

Enhanced tunability of two-dimensional electron gas on SrTiO3 through heterostructuring

127   0   0.0 ( 0 )
 Added by Young Jun Chang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional electron gases (2DEGs) on the SrTiO3 (STO) surface or in STO-based heterostructures have exhibited many intriguing phenomena, which are strongly dependent on the 2DEG-carrier density. We report that the tunability of the 2DEG-carrier density is significantly enhanced by adding a monolayer LaTiO3 (LTO) onto the STO. Ultraviolet (UV) irradiation induced maximum carrier density of the 2DEG in LTO/STO is increased by a factor of ~4 times, compared to that of the bare STO. By oxygen gas exposure, it becomes 10 times smaller than that of the bare STO. This enhanced tunability is attributed to the drastic surface property change of a polar LTO layer by UV irradiation and O2 exposure. This indicates that the 2DEG controllability in LTO/STO is more reliable than that on the bare STO driven by defects, such an oxygen vacancy.

rate research

Read More

Understanding, creating, and manipulating spin polarization of two-dimensional electron gases at complex oxide interfaces presents an experimental challenge. For example, despite almost a decade long research effort, the microscopic origin of ferromagnetism in LaAlO3/SrTiO3 heterojunction is still an open question. Here, by using a prototypical two-dimensional electron gas (2DEG) which emerges at the interface between band insulator SrTiO3 and antiferromagnetic Mott insulator LaTiO3 , the experiment reveals the evidence for magnetic phase separation in hole-doped Ti d1 t2g system resulting in spin-polarized 2DEG. The details of electronic and magnetic properties of the 2DEG were investigated by temperature-dependent d.c. transport, angle-dependent X-ray photoemission spectroscopy, and temperature-dependent magnetoresistance. The observation of clear hysteresis in magnetotransport at low magnetic fields implies spin-polarization from magnetic islands in the hole rich LaTiO3 near the interface. These findings emphasize the role of magnetic instabilities in doped Mott insulators thus providing another path for designing all-oxide structures relevant to spintronics applications.
72 - W. Niu , Y. Zhang , Y. L. Gan 2017
Herein, we reported giant tunability of the physical properties of 2DEGs at the spinel/perovskite interface of {gamma}-Al2O3/SrTiO3 (GAO/STO). By modulating the carrier density thus the band filling with ionic-liquid gating, the system experiences a Lifshitz transition at a critical carrier density of 3E13 cm-2, where a remarkably strong enhancement of Rashba spin-orbit interaction and an emergence of Kondo effect at low temperatures are observed. Moreover, as the carrier concentration depletes with decreasing gating voltage, the electron mobility is enhanced by more than 6 times in magnitude, leading to the observation of clear quantum oscillations. The great tunability of GAO/STO interface by EDLT gating not only shows promise for design of oxide devices with on-demand properties, but also sheds new light on the electronic structure of 2DEG at the non-isostructural spinel/perovskite interface.
Two-dimensional electron gases (2DEGs) in SrTiO$_3$ have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the $d$-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital, and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally-enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO$_3$-based 2DEGs, and yield new microscopic insights on their functional properties.
202 - I. G. Khalil 2001
We calculate the leading order corrections (in $r_s$) to the static polarization $Pi^{*}(q,0,)$, with dynamically screened interactions, for the two-dimensional electron gas. The corresponding diagrams all exhibit singular logarithmic behavior in their derivatives at $q=2 k_F$ and provide significant enhancement to the proper polarization particularly at low densities. At a density of $r_s=3$, the contribution from the leading order {em fluctuational} diagrams exceeds both the zeroth order (Lindhard) response and the self-energy and exchange contributions. We comment on the importance of these diagrams in two-dimensions and make comparisons to an equivalent three-dimensional electron gas; we also consider the impact these finding have on $Pi^{*}(q,0)$ computed to all orders in perturbation theory.
Transport measurements on the two dimensional electron system in Al2O3 SrTiO3 heterostructures indicate significant noncrystalline anisotropic behavior below T = 30 K. Lattice dislocations in SrTiO3 and interfacial steps are suggested to be the main sources for electronic anisotropy. Anisotropic defect scattering likewise alters magnetoresistance at low temperature remarkably and influences spin-orbit coupling significantly by the Elliot Yafet mechanism of spin relaxation resulting in anisotropic weak localization. Applying a magnetic field parallel to the interface results in an additional field induced anisotropy of the conductance, which can be attributed to Rashba spin orbit interaction. Compared to LaAlO3 SrTiO3, Rashba coupling seems to be reduced indicating a weaker polarity in Al2O3 SrTiO3 heterostructures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا