Do you want to publish a course? Click here

Role of Majorana fermions in spin transport of anisotropic Kitaev model

212   0   0.0 ( 0 )
 Added by Hirokazu Taguchi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a quantum spin Kitaev model with zigzag edges to clarify the effects of anisotropy in the exchange couplings on the spin propagation. We simulate the spin and Majorana dynamics triggered by a magnetic pulse, using the real-space time-dependent Majorana mean-field theory. When the anisotropy is small, the dispersion of the itinerant Majorana fermions remains gapless, where the velocity of the spin propagation matches the group velocity of the itinerant Majorana fermions at the nodal points. On the other hand, in the gapped system with a large anisotropy, the spin propagation is strongly suppressed although its nature depends on the shape of the pulse. The spin transport in the junction system described by the Kitaev models with distinct anisotropies is also dressed.



rate research

Read More

Kitaev quantum spin liquid is a topological magnetic quantum state characterized by Majorana fermions of fractionalized spin excitations, which are identical to their own antiparticles. Here, we demonstrate emergence of Majorana fermions thermally fractionalized in the Kitaev honeycomb spin lattice {alpha}-RuCl3. The specific heat data unveil the characteristic two-stage release of magnetic entropy involving localized and itinerant Majorana fermions. The inelastic neutron scattering results further corroborate these two distinct fermions by exhibiting quasielastic excitations at low energies around the Brillouin zone center and Y-shaped magnetic continuum at high energies, which are evident for the ferromagnetic Kitaev model. Our results provide an opportunity to build a unified conceptual framework of fractionalized excitations, applicable also for the quantum Hall states, superconductors, and frustrated magnets.
We study the spin transport through the quantum spin liquid (QSL) by investigating the real-time and real-space dynamics of the Kitaev spin system with a zigzag structure in terms of the time-dependent Majorana mean-field theory. After the magnetic field pulse is introduced to one of the edges, the spin moments are excited in the opposite edge region although no spin moments are induced in the Kitaev QSL region. This unusual spin transport originates from the fact that the $S=1/2$ spins are fractionalized into the itinerant and localized Majorana fermions in the Kitaev system. Although both Majorana fermions are excited by the magnetic pulse, only the itinerant Majorana fermions flow through the bulk regime without the spin excitation, resulting in the spin transport in the Kitaev system. We also demonstrate that this phenomenon can be observed even in the system with the Heisenberg interactions using the exact diagonalization.
We investigate the real-time spin response of the $S=1$ Kitaev model upon stimuli of a pulsed magnetic field in one of the edges using the exact diagonalization method. It is found that the pulsed magnetic field has no effect on the appearance of the spin moments in the quantum spin liquid region, but induces the spin oscillations in the other edge region with a small magnetic field. This is understood by the existence of the itinerant quasiparticles, which carry the spin excitations without the spin polarization in the quantum spin liquid state. This suggests that the spin fractionalizations occur in the $S=1$ Kitaev model as well as the exactly solvable $S=1/2$ Kitaev one and the fractionalized quasiparticles play an essential role in the spin transport.
Magnetic fields can give rise to a plethora of phenomena in Kitaev spin systems, such as the formation of non-trivial spin liquids in two and three spatial dimensions. For the original honeycomb Kitaev model, it has recently been observed that the sign of the bond-directional exchange is of crucial relevance for the field-induced physics, with antiferromagnetic couplings giving rise to an intermediate spin liquid regime between the low-field gapped Kitaev spin liquid and the high-field polarized state, which is not present in the ferromagnetically coupled model. Here, by employing a Majorana mean-field approach for a magnetic field pointing along the [001] direction, we present a systematic study of field-induced spin liquid phases for a variety of two and three-dimensional lattice geometries. We find that antiferromagnetic couplings generically lead to (i) spin liquid phases that are considerably more stable in field than those for ferromagnetic couplings, and (ii) an intermediate spin liquid phase which arises from a change in the topology of the Majorana band structure. Close inspection of the mean-field parameters reveal that the intermediate phase occurs due to a field-driven sign change in an effective $z$-bond energy parameter. Our results clearly demonstrate the richness of the Majorana physics of the antiferromagnetic Kitaev models, in comparison to their ferromagnetic counterparts.
We study the possibility to realize Majorana zero mode that is robust and may be easily manipulated for braiding in quantum computing in the ground state of the Kitaev model in this work. To achieve this we first apply a uniform conical magnetic field to the gapless Kitaev model and turn the Kitaev model to an effective p+ip topological superconductor of spinons. We then study possible vortex binding in such system to a topologically trivial spot in the ground state. We consider two cases in the system. One is a vacancy and the other is a fully polarized spin. We show that in both cases, the system binds a vortex with the defect and a robust Majorana zero mode in the ground state at a weak uniform conical magnetic field. The distribution and asymptotic behavior of these Majorana zero modes is studied. The Majorana zero modes in both cases decay exponentially in space, and are robust against local perturbations and other Majorana zero modes far away, which makes them promissing candidate for braiding in topological quantum computing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا