Do you want to publish a course? Click here

Field stability of Majorana spin liquids in antiferromagnetic Kitaev models

110   0   0.0 ( 0 )
 Added by Christoph Berke
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic fields can give rise to a plethora of phenomena in Kitaev spin systems, such as the formation of non-trivial spin liquids in two and three spatial dimensions. For the original honeycomb Kitaev model, it has recently been observed that the sign of the bond-directional exchange is of crucial relevance for the field-induced physics, with antiferromagnetic couplings giving rise to an intermediate spin liquid regime between the low-field gapped Kitaev spin liquid and the high-field polarized state, which is not present in the ferromagnetically coupled model. Here, by employing a Majorana mean-field approach for a magnetic field pointing along the [001] direction, we present a systematic study of field-induced spin liquid phases for a variety of two and three-dimensional lattice geometries. We find that antiferromagnetic couplings generically lead to (i) spin liquid phases that are considerably more stable in field than those for ferromagnetic couplings, and (ii) an intermediate spin liquid phase which arises from a change in the topology of the Majorana band structure. Close inspection of the mean-field parameters reveal that the intermediate phase occurs due to a field-driven sign change in an effective $z$-bond energy parameter. Our results clearly demonstrate the richness of the Majorana physics of the antiferromagnetic Kitaev models, in comparison to their ferromagnetic counterparts.



rate research

Read More

We study the spin transport through the quantum spin liquid (QSL) by investigating the real-time and real-space dynamics of the Kitaev spin system with a zigzag structure in terms of the time-dependent Majorana mean-field theory. After the magnetic field pulse is introduced to one of the edges, the spin moments are excited in the opposite edge region although no spin moments are induced in the Kitaev QSL region. This unusual spin transport originates from the fact that the $S=1/2$ spins are fractionalized into the itinerant and localized Majorana fermions in the Kitaev system. Although both Majorana fermions are excited by the magnetic pulse, only the itinerant Majorana fermions flow through the bulk regime without the spin excitation, resulting in the spin transport in the Kitaev system. We also demonstrate that this phenomenon can be observed even in the system with the Heisenberg interactions using the exact diagonalization.
The Raman scattering with local optical excitation from the Majorana edge modes of Kitaev spin liquids and topological superconductors is studied theoretically. Although the effective one-dimensional model is common between these two cases, the coupling to the electromagnetic field is different. It is found that the Raman spectrum at low energy scales with $omega^3$ in Kitaev spin liquids while it shows the gap in topological superconductors. This is in sharp contrast to the infrared absorption, where the spectrum shows the gap in Kitaev spin liquids, while it behaves as $sim omega^2$ in topological superconductors. This indicates that the electrodynamics of Majorana edge modes depends on their higher-dimensional origins. The realistic estimate of the Raman scattering intensity is given for $alpha$-RuCl$_3$ as the candidate for Kitaev spin liquid.
We study the excitation spectrum of the spin-1 Kitaev model using the symmetric tensor network. By evaluating the virtual order parameters defined on the virtual Hilbert space in the tensor network formalism, we confirm the ground state is in a $mathbb{Z}_2$ spin liquid phase. Using the correspondence between the transfer matrix spectrum and low-lying excitations, we find that contrary to the dispersive Majorana excitation in the spin-1/2 case, the isotropic spin-1 Kitaev model has a dispersive charge anyon excitation. Bottom of the gapped single-particle charge excitations are found at $mathbf{K}, mathbf{K}=(pm2pi/3, mp 2pi/3)$, with a corresponding correlation length of $xi approx 6.7$ unit cells. The lower edge of the two-particle continuum, which is closely related to the dynamical structure factor measured in inelastic neutron scattering experiments, is obtained by extracting the excitations in the vacuum superselection sector in the anyon theory language
Topological spin liquids in two spatial dimensions are stable phases in the presence of a small magnetic field, but may give way to field-induced phenomena at intermediate field strengths. Sandwiched between the low-field spin liquid physics and the high-field spin-polarized phase, the exploration of magnetic phenomena in this intermediate regime however often remains elusive to controlled analytical approaches. Here we numerically study such intermediate-field magnetic phenomena for two representative Kitaev models (on the square-octagon and decorated honeycomb lattice) that exhibit either Abelian or non-Abelian topological order in the low-field limit. Using a combination of exact diagonalization and density matrix renormalization group techniques, as well as linear spin-wave theory, we establish the generic features of Kitaev spin liquids in an external magnetic field. While ferromagnetic models typically exhibit a direct transition to the polarized state at a relatively low field strength, antiferromagnetic couplings not only substantially stabilizes the topological spin liquid phase, but generically lead to the emergence of a distinct field-induced intermediate regime, separated by a crossover from the high-field polarized regime. Our results suggest that, for most lattice geometries, this regime generically exhibits significant spin canting, antiferromagnetic spin-spin correlations, and an extended proximate spin liquid regime at finite temperatures. Notably, we identify a symmetry obstruction in the original honeycomb Kitaev model that prevents, at least for certain field directions, the formation of such canted magnetism without breaking symmetries -- consistent with the recent numerical observation of an extended gapless spin liquid in this case.
In the field of frustrated magnetism, Kitaev models provide a unique framework to study the phenomena of spin fractionalization and emergent lattice gauge theories in two and three spatial dimensions. Their ground states are quantum spin liquids, which can typically be described in terms of a Majorana band structure and an ordering of the underlying $mathbb{Z}_2$ gauge structure. Here we provide a comprehensive classification of the gauge physics of a family of elementary three-dimensional Kitaev models, discussing how their thermodynamics and ground state order depends on the underlying lattice geometry. Using large-scale, sign-free quantum Monte Carlo simulations we show that the ground-state gauge order can generally be understood in terms of the length of elementary plaquettes -- a result which extends the applicability of Liebs theorem to lattice geometries beyond its original scope. At finite temperatures, the proliferation of (gapped) vison excitations destroys the gauge order at a critical temperature scale, which we show to correlate with the size of vison gap for the family of three-dimensional Kitaev models. We also discuss two notable exceptions where the lattice structure gives rise to gauge frustration or intertwines the gauge ordering with time-reversal symmetry breaking. In a more general context, the thermodynamic gauge transitions in such 3D Kitaev models are one of the most natural settings for phase transitions beyond the standard Landau-Ginzburg-Wilson paradigm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا