Do you want to publish a course? Click here

Deep Polarization Imaging for 3D shape and SVBRDF Acquisition

180   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a novel method for efficient acquisition of shape and spatially varying reflectance of 3D objects using polarization cues. Unlike previous works that have exploited polarization to estimate material or object appearance under certain constraints (known shape or multiview acquisition), we lift such restrictions by coupling polarization imaging with deep learning to achieve high quality estimate of 3D object shape (surface normals and depth) and SVBRDF using single-view polarization imaging under frontal flash illumination. In addition to acquired polarization images, we provide our deep network with strong novel cues related to shape and reflectance, in the form of a normalized Stokes map and an estimate of diffuse color. We additionally describe modifications to network architecture and training loss which provide further qualitative improvements. We demonstrate our approach to achieve superior results compared to recent works employing deep learning in conjunction with flash illumination.



rate research

Read More

The goal of this project is to learn a 3D shape representation that enables accurate surface reconstruction, compact storage, efficient computation, consistency for similar shapes, generalization across diverse shape categories, and inference from depth camera observations. Towards this end, we introduce Local Deep Implicit Functions (LDIF), a 3D shape representation that decomposes space into a structured set of learned implicit functions. We provide networks that infer the space decomposition and local deep implicit functions from a 3D mesh or posed depth image. During experiments, we find that it provides 10.3 points higher surface reconstruction accuracy (F-Score) than the state-of-the-art (OccNet), while requiring fewer than 1 percent of the network parameters. Experiments on posed depth image completion and generalization to unseen classes show 15.8 and 17.8 point improvements over the state-of-the-art, while producing a structured 3D representation for each input with consistency across diverse shape collections.
Reconstructing object geometry and material from multiple views typically requires optimization. Differentiable path tracing is an appealing framework as it can reproduce complex appearance effects. However, it is difficult to use due to high computational cost. In this paper, we explore how to use differentiable ray tracing to refine an initial coarse mesh and per-mesh-facet material representation. In simulation, we find that it is possible to reconstruct fine geometric and material detail from low resolution input views, allowing high-quality reconstructions in a few hours despite the expense of path tracing. The reconstructions successfully disambiguate shading, shadow, and global illumination effects such as diffuse interreflection from material properties. We demonstrate the impact of different geometry initializations, including space carving, multi-view stereo, and 3D neural networks. Finally, with input captured using smartphone video and a consumer 360? camera for lighting estimation, we also show how to refine initial reconstructions of real-world objects in unconstrained environments.
Implicit surface representations, such as signed-distance functions, combined with deep learning have led to impressive models which can represent detailed shapes of objects with arbitrary topology. Since a continuous function is learned, the reconstructions can also be extracted at any arbitrary resolution. However, large datasets such as ShapeNet are required to train such models. In this paper, we present a new mid-level patch-based surface representation. At the level of patches, objects across different categories share similarities, which leads to more generalizable models. We then introduce a novel method to learn this patch-based representation in a canonical space, such that it is as object-agnostic as possible. We show that our representation trained on one category of objects from ShapeNet can also well represent detailed shapes from any other category. In addition, it can be trained using much fewer shapes, compared to existing approaches. We show several applications of our new representation, including shape interpolation and partial point cloud completion. Due to explicit control over positions, orientations and scales of patches, our representation is also more controllable compared to object-level representations, which enables us to deform encoded shapes non-rigidly.
Sequential assembly with geometric primitives has drawn attention in robotics and 3D vision since it yields a practical blueprint to construct a target shape. However, due to its combinatorial property, a greedy method falls short of generating a sequence of volumetric primitives. To alleviate this consequence induced by a huge number of feasible combinations, we propose a combinatorial 3D shape generation framework. The proposed framework reflects an important aspect of human generation processes in real life -- we often create a 3D shape by sequentially assembling unit primitives with geometric constraints. To find the desired combination regarding combination evaluations, we adopt Bayesian optimization, which is able to exploit and explore efficiently the feasible regions constrained by the current primitive placements. An evaluation function conveys global structure guidance for an assembly process and stability in terms of gravity and external forces simultaneously. Experimental results demonstrate that our method successfully generates combinatorial 3D shapes and simulates more realistic generation processes. We also introduce a new dataset for combinatorial 3D shape generation. All the codes are available at url{https://github.com/POSTECH-CVLab/Combinatorial-3D-Shape-Generation}.
Acquiring complete and clean 3D shape and scene data is challenging due to geometric occlusion and insufficient views during 3D capturing. We present a simple yet effective deep learning approach for completing the input noisy and incomplete shapes or scenes. Our network is built upon the octree-based CNNs (O-CNN) with U-Net like structures, which enjoys high computational and memory efficiency and supports to construct a very deep network structure for 3D CNNs. A novel output-guided skip-connection is introduced to the network structure for better preserving the input geometry and learning geometry prior from data effectively. We show that with these simple adaptions -- output-guided skip-connection and deeper O-CNN (up to 70 layers), our network achieves state-of-the-art results in 3D shape completion and semantic scene computation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا