No Arabic abstract
Reconstructing object geometry and material from multiple views typically requires optimization. Differentiable path tracing is an appealing framework as it can reproduce complex appearance effects. However, it is difficult to use due to high computational cost. In this paper, we explore how to use differentiable ray tracing to refine an initial coarse mesh and per-mesh-facet material representation. In simulation, we find that it is possible to reconstruct fine geometric and material detail from low resolution input views, allowing high-quality reconstructions in a few hours despite the expense of path tracing. The reconstructions successfully disambiguate shading, shadow, and global illumination effects such as diffuse interreflection from material properties. We demonstrate the impact of different geometry initializations, including space carving, multi-view stereo, and 3D neural networks. Finally, with input captured using smartphone video and a consumer 360? camera for lighting estimation, we also show how to refine initial reconstructions of real-world objects in unconstrained environments.
We present a novel method for efficient acquisition of shape and spatially varying reflectance of 3D objects using polarization cues. Unlike previous works that have exploited polarization to estimate material or object appearance under certain constraints (known shape or multiview acquisition), we lift such restrictions by coupling polarization imaging with deep learning to achieve high quality estimate of 3D object shape (surface normals and depth) and SVBRDF using single-view polarization imaging under frontal flash illumination. In addition to acquired polarization images, we provide our deep network with strong novel cues related to shape and reflectance, in the form of a normalized Stokes map and an estimate of diffuse color. We additionally describe modifications to network architecture and training loss which provide further qualitative improvements. We demonstrate our approach to achieve superior results compared to recent works employing deep learning in conjunction with flash illumination.
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object from a sparse set of only six images captured by wide-baseline cameras under collocated point lighting. We first estimate per-view depth maps using a deep multi-view stereo network; these depth maps are used to coarsely align the different views. We propose a novel multi-view reflectance estimation network architecture that is trained to pool features from these coarsely aligned images and predict per-view spatially-varying diffuse albedo, surface normals, specular roughness and specular albedo. We do this by jointly optimizing the latent space of our multi-view reflectance network to minimize the photometric error between images rendered with our predictions and the input images. While previous state-of-the-art methods fail on such sparse acquisition setups, we demonstrate, via extensive experiments on synthetic and real data, that our method produces high-quality reconstructions that can be used to render photorealistic images.
Modern computer vision algorithms have brought significant advancement to 3D geometry reconstruction. However, illumination and material reconstruction remain less studied, with current approaches assuming very simplified models for materials and illumination. We introduce Inverse Path Tracing, a novel approach to jointly estimate the material properties of objects and light sources in indoor scenes by using an invertible light transport simulation. We assume a coarse geometry scan, along with corresponding images and camera poses. The key contribution of this work is an accurate and simultaneous retrieval of light sources and physically based material properties (e.g., diffuse reflectance, specular reflectance, roughness, etc.) for the purpose of editing and re-rendering the scene under new conditions. To this end, we introduce a novel optimization method using a differentiable Monte Carlo renderer that computes derivatives with respect to the estimated unknown illumination and material properties. This enables joint optimization for physically correct light transport and material models using a tailored stochastic gradient descent.
We propose a differentiable sphere tracing algorithm to bridge the gap between inverse graphics methods and the recently proposed deep learning based implicit signed distance function. Due to the nature of the implicit function, the rendering process requires tremendous function queries, which is particularly problematic when the function is represented as a neural network. We optimize both the forward and backward passes of our rendering layer to make it run efficiently with affordable memory consumption on a commodity graphics card. Our rendering method is fully differentiable such that losses can be directly computed on the rendered 2D observations, and the gradients can be propagated backwards to optimize the 3D geometry. We show that our rendering method can effectively reconstruct accurate 3D shapes from various inputs, such as sparse depth and multi-view images, through inverse optimization. With the geometry based reasoning, our 3D shape prediction methods show excellent generalization capability and robustness against various noises.
We present a novel method to jointly learn a 3D face parametric model and 3D face reconstruction from diverse sources. Previous methods usually learn 3D face modeling from one kind of source, such as scanned data or in-the-wild images. Although 3D scanned data contain accurate geometric information of face shapes, the capture system is expensive and such datasets usually contain a small number of subjects. On the other hand, in-the-wild face images are easily obtained and there are a large number of facial images. However, facial images do not contain explicit geometric information. In this paper, we propose a method to learn a unified face model from diverse sources. Besides scanned face data and face images, we also utilize a large number of RGB-D images captured with an iPhone X to bridge the gap between the two sources. Experimental results demonstrate that with training data from more sources, we can learn a more powerful face model.