Do you want to publish a course? Click here

Quantum probing of null-singularities

110   0   0.0 ( 0 )
 Added by Marc Schneider
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We adapt the dual-null foliation to the functional Schrodinger representation of quantum field theory and study the behavior of quantum probes in plane-wave space-times near the null-singularity. A comparison between the Einstein-Rosen and the Brinkmann patch, where the latter extends beyond the first, shows a seeming tension that can be resolved by comparing the configuration spaces. Our analysis concludes that Einstein-Rosen space-times support exclusively configurations with non-empty gravitational memory that are focussed to a set of measure zero in the focal plane with respect to a Brinkmann observer. To conclude, we provide a rough framework to estimate the qualitative influence of back-reactions on these results.



rate research

Read More

We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does not require observations over all of future null infinity. Moreover, all information about the state that can be obtained through observations near a cut of future null infinity can also be obtained from observations near any earlier cut although the converse is not true. We provide independent arguments for these two assertions. Similar statements hold for past null infinity. These statements have immediate implications for the information paradox since they suggest that the fine-grained von Neumann entropy of the state defined on a segment $(-infty,u)$ of future null infinity is independent of u. This is very different from the oft-discussed Page curve that this entropy is sometimes expected to obey. We contrast our results with recent discussions of the Page curve in the context of black hole evaporation, and also discuss the relation of our results to other proposals for holography in flat space.
161 - Tim Adamo , Uri Kol 2021
We give two double copy prescriptions which construct asymptotically flat solutions in gravity from asymptotically flat gauge fields. The first prescription applies to radiative fields, which are non-linear vacuum solutions determined by characteristic data at null infinity. For any two such radiative gauge fields (linear or non-linear), the characteristic data of a radiative metric, dilaton and axion is constructed by a simple `squaring procedure, giving a classical double copy at the level of radiation fields. We demonstrate the procedure with several examples where the characteristic data can be explicitly integrated; for linear fields this also sheds light on the twistorial description of Weyl double copy. Our second prescription applies to all asymptotically flat fields at the level of their asymptotic equations of motion: we give a map between any solution of the asymptotic Maxwell equations and any solution of the asymptotic Einstein equations at null infinity. This also extends to the asymptotic charges and their duals, preserves the soft and hard sectors between gauge theory and gravity, and is related to the usual notion of double copy in scattering amplitudes.
We study whether a violation of the null energy condition necessarily implies the presence of instabilities. We prove that this is the case in a large class of situations, including isotropic solids and fluids relevant for cosmology. On the other hand we present several counter-examples of consistent effective field theories possessing a stable background where the null energy condition is violated. Two necessary features of these counter-examples are the lack of isotropy of the background and the presence of superluminal modes. We argue that many of the properties of massive gravity can be understood by associating it to a solid at the edge of violating the null energy condition. We briefly analyze the difficulties of mimicking $dot H>0$ in scalar tensor theories of gravity.
We study general relativity at a null boundary using the covariant phase space formalism. We define a covariant phase space and compute the algebra of symmetries at the null boundary by considering the boundary-preserving diffeomorphisms that preserve this phase space. This algebra is the semi-direct sum of diffeomorphisms on the two sphere and a nonabelian algebra of supertranslations that has some similarities to supertranslations at null infinity. By using the general prescription developed by Wald and Zoupas, we derive the localized charges of this algebra at cross sections of the null surface as well as the associated fluxes. Our analysis is covariant and applies to general non-stationary null surfaces. We also derive the global charges that generate the symmetries for event horizons, and show that these obey the same algebra as the linearized diffeomorphisms, without any central extension. Our results show that supertranslations play an important role not just at null infinity but at all null boundaries, including non-stationary event horizons. They should facilitate further investigations of whether horizon symmetries and conservation laws in black hole spacetimes play a role in the information loss problem, as suggested by Hawking, Perry, and Strominger.
The area of a cross-sectional cut $Sigma$ of future null infinity ($mathcal{I}^+$) is infinite. We define a finite, renormalized area by subtracting the area of the same cut in any one of the infinite number of BMS-degenerate classical vacua. The renormalized area acquires an anomalous dependence on the choice of vacuum. We relate it to the modular energy, including a soft graviton contribution, of the region of $mathcal{I}^+$ to the future of $Sigma$. Under supertranslations, the renormalized area shifts by the supertranslation charge of $Sigma$. In quantum gravity, we conjecture a bound relating the renormalized area to the entanglement entropy across $Sigma$ of the outgoing quantum state on $mathcal{I}^+$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا