No Arabic abstract
We study general relativity at a null boundary using the covariant phase space formalism. We define a covariant phase space and compute the algebra of symmetries at the null boundary by considering the boundary-preserving diffeomorphisms that preserve this phase space. This algebra is the semi-direct sum of diffeomorphisms on the two sphere and a nonabelian algebra of supertranslations that has some similarities to supertranslations at null infinity. By using the general prescription developed by Wald and Zoupas, we derive the localized charges of this algebra at cross sections of the null surface as well as the associated fluxes. Our analysis is covariant and applies to general non-stationary null surfaces. We also derive the global charges that generate the symmetries for event horizons, and show that these obey the same algebra as the linearized diffeomorphisms, without any central extension. Our results show that supertranslations play an important role not just at null infinity but at all null boundaries, including non-stationary event horizons. They should facilitate further investigations of whether horizon symmetries and conservation laws in black hole spacetimes play a role in the information loss problem, as suggested by Hawking, Perry, and Strominger.
We address some general issues related to torsion and Noether currents for Fermi fields in the presence of boundaries, with emphasis on the conditions that guarantee charge conservation. We also describe exact solutions of these boundary conditions and some implications for string vacua with broken supersymmetry.
We study the covariant phase space of vacuum general relativity at the null boundary of causal diamonds. The past and future components of such a null boundary each have an infinite-dimensional symmetry algebra consisting of diffeomorphisms of the $2$-sphere and boost supertranslations corresponding to angle-dependent rescalings of affine parameter along the null generators. Associated to these symmetries are charges and fluxes obtained from the covariant phase space formalism using the prescription of Wald and Zoupas. By analyzing the behavior of the spacetime metric near the corners of the causal diamond, we show that the fluxes are also Hamiltonian generators of the symmetries on the phase space. In particular, the supertranslation fluxes yield an infinite family of boost Hamiltonians acting on the gravitational data of causal diamonds. We show that the smoothness of the vector fields representing such symmetries at the bifurcation edge of the causal diamond implies suitable matching conditions between the symmetries on the past and future components of the null boundary. Similarly, the smoothness of the spacetime metric implies that the fluxes of all such symmetries is conserved between the past and future components of the null boundary. This establishes an infinite set of conservation laws for finite subregions in gravity analogous to those at null infinity. We also show that the symmetry algebra at the causal diamond has a non-trivial center corresponding to constant boosts. The central charges associated to these constant boosts are proportional to the area of the bifurcation edge, for any causal diamond, in analogy with the Wald entropy formula.
In this paper we establish a relation between the non-linearly conserved Newman-Penrose charges and certain subleading terms in a large-$r$ expansion of the BMS charges in an asymptotically-flat spacetime. We define the subleading BMS charges by considering a $1/r$-expansion of the Barnich-Brandt prescription for defining asymptotic charges in an asymptotically-flat spacetime. At the leading order, i.e. $1/r^0$, one obtains the standard BMS charges, which would be integrable and conserved in the absence of a flux term at null infinity, corresponding to gravitational radiation, or Bondi news. At subleading orders, analogous terms in general provide obstructions to the integrability of the corresponding charges. Since the subleading terms are defined close to null infinity, but vanish actually at infinity, the analogous obstructions are not associated with genuine Bondi news. One may instead describe them as corresponding to fake news. At order $r^{-3}$, we find that a set of integrable charges can be defined and that these are related to the ten non-linearly conserved Newman-Penrose charges.
Motivated by the study of conserved Aretakis charges for a scalar field on the horizon of an extremal black hole, we construct the metrics for certain classes of four-dimensional and five-dimensional extremal rotating black holes in Gaussian null coordinates. We obtain these as expansions in powers of the radial coordinate, up to sufficient order to be able to compute the Aretakis charges. The metrics we consider are for 4-charge black holes in four-dimensional STU supergravity (including the Kerr-Newman black hole in the equal-charge case) and the general 3-charge black holes in five-dimensional STU supergravity. We also investigate the circumstances under which the Aretakis charges of an extremal black hole can be mapped by conformal inversion of the metric into Newman-Penrose charges at null infinity. We show that while this works for four-dimensional static black holes, a simple radial inversion fails in rotating cases because a necessary conformal symmetry of the massless scalar equation breaks down. We also discuss that a massless scalar field in dimensions higher than four does not have any conserved Newman-Penrose charge, even in a static asymptotically flat spacetime.
We revisit the covariant phase space formalism applied to gravitational theories with null boundaries, utilizing the most general boundary conditions consistent with a fixed null normal. To fix the ambiguity inherent in the Wald-Zoupas definition of quasilocal charges, we propose a new principle, based on holographic reasoning, that the flux be of Dirichlet form. This also produces an expression for the analog of the Brown-York stress tensor on the null surface. Defining the algebra of charges using the Barnich-Troessaert bracket for open subsystems, we give a general formula for the central -- or more generally, abelian -- extensions that appear in terms of the anomalous transformation of the boundary term in the gravitational action. This anomaly arises from having fixed a frame for the null normal, and we draw parallels between it and the holographic Weyl anomaly that occurs in AdS/CFT. As an application of this formalism, we analyze the near-horizon Virasoro symmetry considered by Haco, Hawking, Perry, and Strominger, and perform a systematic derivation of the fluxes and central charges. Applying the Cardy formula to the result yields an entropy that is twice the Bekenstein-Hawking entropy of the horizon. Motivated by the extended Hilbert space construction, we interpret this in terms of a pair of entangled CFTs associated with edge modes on either side of the bifurcation surface.