Do you want to publish a course? Click here

Variational tight-binding method for simulating large superconducting circuits

107   0   0.0 ( 0 )
 Added by Daniel Weiss
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We generalize solid-state tight-binding techniques for the spectral analysis of large superconducting circuits. We find that tight-binding states can be better suited for approximating the low-energy excitations than charge-basis states, as illustrated for the interesting example of the current-mirror circuit. The use of tight binding can dramatically lower the Hilbert space dimension required for convergence to the true spectrum, and allows for the accurate simulation of larger circuits that are out of reach of charge basis diagonalization.



rate research

Read More

Superconducting quantum circuits are typically housed in conducting enclosures in order to control their electromagnetic environment. As devices grow in physical size, the electromagnetic modes of the enclosure come down in frequency and can introduce unwanted long-range cross-talk between distant elements of the enclosed circuit. Incorporating arrays of inductive shunts such as through-substrate vias or machined pillars can suppress these effects by raising these mode frequencies. Here, we derive simple, accurate models for the modes of enclosures that incorporate such inductive-shunt arrays. We use these models to predict that cavity-mediated inter-qubit couplings and drive-line cross-talk are exponentially suppressed with distance for arbitrarily large quantum circuits housed in such enclosures, indicating the promise of this approach for quantum computing. We find good agreement with a finite-element simulation of an example device containing more than 400 qubits.
Superconducting quantum circuits is one of the leading candidates for a universal quantum computer. Designing novel qubit and multiqubit superconducting circuits requires the ability to simulate and analyze the properties of a general circuit. In particular, going outside the transmon approach, we cannot make assumptions on anharmonicity, thus precluding blackbox quantization approaches and necessitating the formal circuit quantization approach. We consider and solve two issues involved in simulating general superconducting circuits. One of the issues is the handling of free modes in the circuit, that is, circuit modes with no potential term in the Hamiltonian. Another issue is circuit size, namely the challenge of simulating strongly coupled multimode circuits. The main mathematical tool we use to address these issues is the linear canonical transformation in the setting of quantum mechanics. We address the first issue by giving a provably correct algorithm for removing free modes by performing a linear canonical transformation to completely decouple the free modes from other circuit modes. We address the second by giving a series of different linear canonical transformations to reduce intermode couplings, thereby reducing the problem to the weakly coupled case and greatly mitigating the overhead for classical simulation. We benchmark our decoupling methods by applying them to the circuit of two inductively coupled fluxonium qubits, obtaining several orders of magnitude reduction in the size of the Hilbert space that needs to be simulated.
Limited quantum memory is one of the most important constraints for near-term quantum devices. Understanding whether a small quantum computer can simulate a larger quantum system, or execute an algorithm requiring more qubits than available, is both of theoretical and practical importance. In this Letter, we introduce cluster parameters $K$ and $d$ of a quantum circuit. The tensor network of such a circuit can be decomposed into clusters of size at most $d$ with at most $K$ qubits of inter-cluster quantum communication. We propose a cluster simulation scheme that can simulate any $(K,d)$-clustered quantum circuit on a $d$-qubit machine in time roughly $2^{O(K)}$, with further speedups possible when taking more fine-grained circuit structure into account. We show how our scheme can be used to simulate clustered quantum systems -- such as large molecules -- that can be partitioned into multiple significantly smaller clusters with weak interactions among them. By using a suitable clustered ansatz, we also experimentally demonstrate that a quantum variational eigensolver can still achieve the desired performance for estimating the energy of the BeH$_2$ molecule while running on a physical quantum device with half the number of required qubits.
165 - Daochen Wang 2019
In a recent breakthrough, Bravyi, Gosset and K{o}nig (BGK) [Science, 2018] proved that simulating constant depth quantum circuits takes classical circuits $Omega(log n)$ depth. In our paper, we first formalise their notion of simulation, which we call possibilistic simulation. Then, from well-known results, we deduce that their circuits can be simulated in depth $O(log^{2} n)$. Separately, we construct explicit classical circuits that can simulate any depth-$d$ quantum circuit with Clifford and $t$ $T$-gates in depth $O(d+t)$. Our classical circuits use ${text{NOT, AND, OR}}$ gates of fan-in $leq 2$.
Modified group projector technique for induced representations is a powerful tool for calculation and symmetry quantum numbers assignation of a tight binding Hamiltonian energy bands of crystals. Namely, the induced type structure of such a Hamiltonian enables efficient application of the procedure: only the interior representations of the orbit stabilizers are to be considered. Then the generalized Bloch eigen functions are obtained naturally by the expansion to the whole state space. The method is applied to the electronic pi-bands of the single wall carbon nanotubes: together with dispersion relations, their complete symmetry assignation by the full symmetry (line) groups and the corresponding symmetry-adapted eigen function are found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا