No Arabic abstract
In a recent breakthrough, Bravyi, Gosset and K{o}nig (BGK) [Science, 2018] proved that simulating constant depth quantum circuits takes classical circuits $Omega(log n)$ depth. In our paper, we first formalise their notion of simulation, which we call possibilistic simulation. Then, from well-known results, we deduce that their circuits can be simulated in depth $O(log^{2} n)$. Separately, we construct explicit classical circuits that can simulate any depth-$d$ quantum circuit with Clifford and $t$ $T$-gates in depth $O(d+t)$. Our classical circuits use ${text{NOT, AND, OR}}$ gates of fan-in $leq 2$.
Verification of NISQ era quantum devices demands fast classical simulation of large noisy quantum circuits. We present an algorithm based on the stabilizer formalism that can efficiently simulate noisy stabilizer circuits. Additionally, the protocol can efficiently simulate a large set of multi-qubit mixed states that are not mixtures of stabilizer states. The existence of these bound states was previously only known for odd-dimensional systems like qutrits. The algorithm also has the favorable property that circuits with depolarizing noise are simulated much faster than unitary circuits. This work builds upon a similar algorithm by Bennink et al. (Phys. Rev. A 95, 062337) and utilizes a framework by Pashayan et al. (Phys. Rev. Lett. 115, 070501).
Recently, constant-depth quantum circuits are proved more powerful than their classical counterparts at solving certain problems, e.g., the two-dimensional (2D) hidden linear function (HLF) problem regarding a symmetric binary matrix. To further investigate the boundary between classical and quantum computing models, in this work we propose a high-performance two-stage classical scheme to solve a full-sampling variant of the 2D HLF problem, which combines traditional classical parallel algorithms and a gate-based classical circuit model together for exactly simulating the target shallow quantum circuits. Under reasonable parameter assumptions, a theoretical analysis reveals our classical simulator consumes less runtime than that of near-term quantum processors for most problem instances. Furthermore, we demonstrate the typical all-connected 2D grid instances by moderate FPGA circuits, and show our designed parallel scheme is a practically scalable, high-efficient and operationally convenient tool for simulating and verifying graph-state circuits performed by current quantum hardware.
Simulating quantum circuits using classical computers lets us analyse the inner workings of quantum algorithms. The most complete type of simulation, strong simulation, is believed to be generally inefficient. Nevertheless, several efficient strong simulation techniques are known for restricted families of quantum circuits and we develop an additional technique in this article. Further, we show that strong simulation algorithms perform another fundamental task: solving search problems. Efficient strong simulation techniques allow solutions to a class of search problems to be counted and found efficiently. This enhances the utility of strong simulation methods, known or yet to be discovered, and extends the class of search problems known to be efficiently simulable. Relating strong simulation to search problems also bounds the computational power of efficiently strongly simulable circuits; if they could solve all problems in $mathrm{P}$ this would imply the collapse of the complexity hierarchy $mathrm{P} subseteq mathrm{NP} subseteq # mathrm{P}$.
It is believed that random quantum circuits are difficult to simulate classically. These have been used to demonstrate quantum supremacy: the execution of a computational task on a quantum computer that is infeasible for any classical computer. The task underlying the assertion of quantum supremacy by Arute et al. (Nature, 574, 505--510 (2019)) was initially estimated to require Summit, the worlds most powerful supercomputer today, approximately 10,000 years. The same task was performed on the Sycamore quantum processor in only 200 seconds. In this work, we present a tensor network-based classical simulation algorithm. Using a Summit-comparable cluster, we estimate that our simulator can perform this task in less than 20 days. On moderately-sized instances, we reduce the runtime from years to minutes, running several times faster than Sycamore itself. These estimates are based on explicit simulations of parallel subtasks, and leave no room for hidden costs. The simulators key ingredient is identifying and optimizing the stem of the computation: a sequence of pairwise tensor contractions that dominates the computational cost. This orders-of-magnitude reduction in classical simulation time, together with proposals for further significant improvements, indicates that achieving quantum supremacy may require a period of continuing quantum hardware developments without an unequivocal first demonstration.
Limited quantum memory is one of the most important constraints for near-term quantum devices. Understanding whether a small quantum computer can simulate a larger quantum system, or execute an algorithm requiring more qubits than available, is both of theoretical and practical importance. In this Letter, we introduce cluster parameters $K$ and $d$ of a quantum circuit. The tensor network of such a circuit can be decomposed into clusters of size at most $d$ with at most $K$ qubits of inter-cluster quantum communication. We propose a cluster simulation scheme that can simulate any $(K,d)$-clustered quantum circuit on a $d$-qubit machine in time roughly $2^{O(K)}$, with further speedups possible when taking more fine-grained circuit structure into account. We show how our scheme can be used to simulate clustered quantum systems -- such as large molecules -- that can be partitioned into multiple significantly smaller clusters with weak interactions among them. By using a suitable clustered ansatz, we also experimentally demonstrate that a quantum variational eigensolver can still achieve the desired performance for estimating the energy of the BeH$_2$ molecule while running on a physical quantum device with half the number of required qubits.