Do you want to publish a course? Click here

What happened before? -- The disks around the precursors of young Herbig Ae/Be stars

102   0   0.0 ( 0 )
 Added by Per-Gunnar Valegard
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We seek to find the precursors of the Herbig Ae/Be stars in the solar vicinity within 500 pc from the Sun. We do this by creating an optically selected sample of intermediate mass T-Tauri stars (IMTT stars) here defined as stars of masses $1.5 M_{odot}leq M_* leq 5 M_{odot}$ and spectral type between F and K3, from literature. We use literature optical photometry (0.4-1.25$mu$m) and distances determined from Gaia DR2 parallax measurements together with Kurucz stellar model spectra to place the stars in a HR-diagram. With Siess evolutionary tracks we identify intermediate mass T-Tauri stars from literature and derive masses and ages. We use Spitzer spectra to classify the disks around the stars into Meeus Group I and Group II disks based on their [F$_{30}$/F$_{13.5}$] spectral index. We also examine the 10$mu$m silicate dust grain emission and identify emission from Polycyclic Aromatic Hydrocarbons (PAH). From this we build a qualitative picture of the disks around the intermediate mass T-Tauri stars and compare this with available spatially resolved images at infrared and at sub-millimeter wavelengths to confirm our classification. We find 49 intermediate mass T-Tauri stars with infrared excess. The identified disks are similar to the older Herbig Ae/Be stars in disk geometries and silicate dust grain population. Spatially resolved images at infra-red and sub-mm wavelengths suggest gaps and spirals are also present around the younger precursors to the Herbig Ae/Be stars. Comparing the timescale of stellar evolution towards the main sequence and current models of protoplanetary disk evolution the similarity between Herbig Ae/Be stars and the intermediate mass T-Tauri stars points towards an evolution of Group I and Group II disks that are disconnected, and that they represent two different evolutionary paths.



rate research

Read More

112 - K. Perraut 2019
The formation and the evolution of protoplanetary disks are important stages in the lifetime of stars. The processes of disk evolution and planet formation are intrinsically linked. We spatially resolve with GRAVITY/VLTI in the K-band the sub au-scale region of 27 stars to gain statistical understanding of their properties. We look for correlations with stellar parameters, such as luminosity, mass, temperature and age. Our sample also cover a range of various properties in terms of reprocessed flux, flared or flat morphology, and gaps. We developed semi-physical geometrical models to fit our interferometric data. Our best models correspond to smooth and wide rings, implying that wedge-shaped rims at the dust sublimation edge are favored, as found in the H-band. The closure phases are generally non-null with a median value of ~10 deg, indicating spatial asymmetries of the intensity distributions. Multi-size grain populations could explain the closure phase ranges below 20-25 deg but other scenarios should be invoked to explain the largest ones. Our measurements extend the Radius-Luminosity relation to ~1e4 Lsun and confirm the significant spread around the mean relation observed in the H-band. Gapped sources exhibit a large N-to-K band size ratio and large values of this ratio are only observed for the members of our sample that would be older than 1 Ma, less massive, and with lower luminosity. In the 2 Ms mass range, we observe a correlation in the increase of the relative age with the transition from group II to group I, and an increase of the N-to-K size ratio. However, the size of the current sample does not yet permit us to invoke a clear universal evolution mechanism across the HAeBe mass range. The measured locations of the K-band emission suggest that these disks might be structured by forming young planets, rather than by depletion due to EUV, FUV, and X-ray photo-evaporation.
Infrared and (sub-)mm observations of disks around T Tauri and Herbig Ae/Be stars point to a chemical differentiation between both types of disks, with a lower detection rate of molecules in disks around hotter stars. To investigate the potential underlying causes we perform a comparative study of the chemistry of T Tauri and Herbig Ae/Be disks, using a model that pays special attention to photochemistry. The warmer disk temperatures and higher ultraviolet flux of Herbig stars compared to T Tauri stars induce some differences in the disk chemistry. In the hot inner regions, H2O, and simple organic molecules like C2H2, HCN, and CH4 are predicted to be very abundant in T Tauri disks and even more in Herbig Ae/Be disks, in contrast with infrared observations that find a much lower detection rate of water and simple organics toward disks around hotter stars. In the outer regions, the model indicates that the molecules typically observed in disks, like HCN, CN, C2H, H2CO, CS, SO, and HCO+, do not have drastic abundance differences between T Tauri and Herbig Ae disks. Some species produced under the action of photochemistry, like C2H and CN, are predicted to have slightly lower abundances around Herbig Ae stars due to a narrowing of the photochemically active layer. Observations indeed suggest that these radicals are somewhat less abundant in Herbig Ae disks, although in any case the inferred abundance differences are small, of a factor of a few at most. A clear chemical differentiation between both types of disks concerns ices, which are expected to be more abundant in Herbig Ae disks. The global chemical behavior of T Tauri and Herbig Ae/Be disks is quite similar. The main differences are driven by the warmer temperatures of the latter, which result in a larger reservoir or water and simple organics in the inner regions and a lower mass of ices in the outer disk.
We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 mu m using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of equal numbers of objects belonging to the two categories defined by Meeus et al. (2001); 11 group I (flaring disk) and II (at disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is hard to be resolved with 8 meter class telescopes in Q-band due to the strong emission from the unresolved innermost region of the disk. It indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 mu m, we suggest that many, not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 mu m supports that group II disks have continuous at disk geometry. It has been inferred that group I disks may evolve into group II through settling of dust grains to the mid-plane of the proto-planetary disk. However, considering growing evidence for the presence of a hole or gaps in the disk of group I sources, such an evolutionary scenario is unlikely. The difference between groups I and II may reflect different evolutionary pathways of protoplanetary disks.
Mid-IR emission lines of H2 are useful probes to determine the mass of warm gas present in the surface layers of disks. Numerous observations of Herbig Ae/Be stars (HAeBes) have been performed, but only 2 detections of mid-IR H2 toward HD97048 and AB Aur have been reported. We aim at tracing the warm gas in the disks of 5 HAeBes with gas-rich environments and physical characteristics close to those of AB Aur and HD97048, to discuss whether the detections toward these 2 objects are suggestive of peculiar conditions for the gas. We search for the H2 S(1) emission line at 17.035 mum with VISIR, and complemented by CH molecule observations with UVES. We gather the H2 measurements from the literature to put the new results in context and search for a correlation with some disk properties. None of the 5 VISIR targets shows evidence for H2 emission. From the 3sigma upper limits on the integrated line fluxes we constrain the amount of optically thin warm gas to be less than 1.4 M_Jup in the disk surface layers. There are now 20 HAeBes observed with VISIR and TEXES instruments to search for warm H2, but only two detections (HD97048 and AB Aur) were made so far. We find that the two stars with detected warm H2 show at the same time high 30/13 mum flux ratios and large PAH line fluxes at 8.6 and 11.3 mum compared to the bulk of observed HAeBes and have emission CO lines detected at 4.7 mum. We detect the CH 4300.3A absorption line toward both HD97048 and AB Aur with UVES. The CH to H2 abundance ratios that this would imply if it were to arise from the same component as well as the radial velocity of the CH lines both suggest that CH arises from a surrounding envelope, while the detected H2 would reside in the disk. The two detections of the S(1) line in the disks of HD97048 and AB Aur suggest either peculiar physical conditions or a particular stage of evolution.
We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred dipoles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا