Do you want to publish a course? Click here

The GRAVITY Young Stellar Object survey -- I. Probing the disks of Herbig Ae/Be stars in terrestrial orbits

113   0   0.0 ( 0 )
 Added by Lucas Labadie
 Publication date 2019
  fields Physics
and research's language is English
 Authors K. Perraut




Ask ChatGPT about the research

The formation and the evolution of protoplanetary disks are important stages in the lifetime of stars. The processes of disk evolution and planet formation are intrinsically linked. We spatially resolve with GRAVITY/VLTI in the K-band the sub au-scale region of 27 stars to gain statistical understanding of their properties. We look for correlations with stellar parameters, such as luminosity, mass, temperature and age. Our sample also cover a range of various properties in terms of reprocessed flux, flared or flat morphology, and gaps. We developed semi-physical geometrical models to fit our interferometric data. Our best models correspond to smooth and wide rings, implying that wedge-shaped rims at the dust sublimation edge are favored, as found in the H-band. The closure phases are generally non-null with a median value of ~10 deg, indicating spatial asymmetries of the intensity distributions. Multi-size grain populations could explain the closure phase ranges below 20-25 deg but other scenarios should be invoked to explain the largest ones. Our measurements extend the Radius-Luminosity relation to ~1e4 Lsun and confirm the significant spread around the mean relation observed in the H-band. Gapped sources exhibit a large N-to-K band size ratio and large values of this ratio are only observed for the members of our sample that would be older than 1 Ma, less massive, and with lower luminosity. In the 2 Ms mass range, we observe a correlation in the increase of the relative age with the transition from group II to group I, and an increase of the N-to-K size ratio. However, the size of the current sample does not yet permit us to invoke a clear universal evolution mechanism across the HAeBe mass range. The measured locations of the K-band emission suggest that these disks might be structured by forming young planets, rather than by depletion due to EUV, FUV, and X-ray photo-evaporation.



rate research

Read More

We seek to find the precursors of the Herbig Ae/Be stars in the solar vicinity within 500 pc from the Sun. We do this by creating an optically selected sample of intermediate mass T-Tauri stars (IMTT stars) here defined as stars of masses $1.5 M_{odot}leq M_* leq 5 M_{odot}$ and spectral type between F and K3, from literature. We use literature optical photometry (0.4-1.25$mu$m) and distances determined from Gaia DR2 parallax measurements together with Kurucz stellar model spectra to place the stars in a HR-diagram. With Siess evolutionary tracks we identify intermediate mass T-Tauri stars from literature and derive masses and ages. We use Spitzer spectra to classify the disks around the stars into Meeus Group I and Group II disks based on their [F$_{30}$/F$_{13.5}$] spectral index. We also examine the 10$mu$m silicate dust grain emission and identify emission from Polycyclic Aromatic Hydrocarbons (PAH). From this we build a qualitative picture of the disks around the intermediate mass T-Tauri stars and compare this with available spatially resolved images at infrared and at sub-millimeter wavelengths to confirm our classification. We find 49 intermediate mass T-Tauri stars with infrared excess. The identified disks are similar to the older Herbig Ae/Be stars in disk geometries and silicate dust grain population. Spatially resolved images at infra-red and sub-mm wavelengths suggest gaps and spirals are also present around the younger precursors to the Herbig Ae/Be stars. Comparing the timescale of stellar evolution towards the main sequence and current models of protoplanetary disk evolution the similarity between Herbig Ae/Be stars and the intermediate mass T-Tauri stars points towards an evolution of Group I and Group II disks that are disconnected, and that they represent two different evolutionary paths.
The innermost astronomical unit in protoplanetary disks is a key region for stellar and planet formation, as exoplanet searches have shown a large occurrence of close-in planets that are located within the first au around their host star. We aim to reveal the morphology of the disk inner rim using near-infrared interferometric observations with milli-arcsecond resolution provided by infrared interferometry. We provide reconstructed images of 15 objects selected from the Herbig AeBe survey carried out with PIONIER at the VLTI, using SPARCO. We find that 40% of the systems are centrosymmetric at the angular resolution of the observations. For the rest of the objects, we find evidence for asymmetric emission due to moderate-to-strong inclination of a disk-like structure for 30% of the objects and noncentrosymmetric morphology due to a nonaxisymmetric and possibly variable environment (30%). Among the systems with a disk-like structure, 20% show a resolved dust-free cavity. The image reconstruction process is a powerful tool to reveal complex disk inner rim morphologies. At the angular resolution reached by near-infrared interferometric observations, most of the images are compatible with a centrally peaked emission (no cavity). For the most resolved targets, image reconstruction reveals morphologies that cannot be reproduced by generic parametric models. Moreover, the nonaxisymmetric disks show that the spatial resolution probed by optical interferometers makes the observations of the near-infrared emission sensitive to temporal evolution with a time-scale down to a few weeks. The evidence of nonaxisymmetric emission that cannot be explained by simple inclination and radiative transfer effects requires alternative explanations, such as a warping of the inner disks. Interferometric observations can, therefore, be used to follow the evolution of the asymmetry of those disks at a sub-au scale.
Infrared and (sub-)mm observations of disks around T Tauri and Herbig Ae/Be stars point to a chemical differentiation between both types of disks, with a lower detection rate of molecules in disks around hotter stars. To investigate the potential underlying causes we perform a comparative study of the chemistry of T Tauri and Herbig Ae/Be disks, using a model that pays special attention to photochemistry. The warmer disk temperatures and higher ultraviolet flux of Herbig stars compared to T Tauri stars induce some differences in the disk chemistry. In the hot inner regions, H2O, and simple organic molecules like C2H2, HCN, and CH4 are predicted to be very abundant in T Tauri disks and even more in Herbig Ae/Be disks, in contrast with infrared observations that find a much lower detection rate of water and simple organics toward disks around hotter stars. In the outer regions, the model indicates that the molecules typically observed in disks, like HCN, CN, C2H, H2CO, CS, SO, and HCO+, do not have drastic abundance differences between T Tauri and Herbig Ae disks. Some species produced under the action of photochemistry, like C2H and CN, are predicted to have slightly lower abundances around Herbig Ae stars due to a narrowing of the photochemically active layer. Observations indeed suggest that these radicals are somewhat less abundant in Herbig Ae disks, although in any case the inferred abundance differences are small, of a factor of a few at most. A clear chemical differentiation between both types of disks concerns ices, which are expected to be more abundant in Herbig Ae disks. The global chemical behavior of T Tauri and Herbig Ae/Be disks is quite similar. The main differences are driven by the warmer temperatures of the latter, which result in a larger reservoir or water and simple organics in the inner regions and a lower mass of ices in the outer disk.
We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred dipoles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.
We present the results of a study of the temporal behaviour of several diagnostic lines formed in the region of the accretion-disk/star interaction in the three magnetic Herbig Ae stars HD101412, HD104237, and HD190073. More than 100 spectra acquired with the ISAAC, X-shooter, and CRIRES spectrographs installed at the VLT-8m telescope (ESO, Chile), as well as at other observatories (OHP, Crimean AO) were analyzed. The spectroscopic data were obtained in the He I lambda10830, Pa gamma and He I lambda5876 lines. We found that the temporal behaviour of the diagnostic lines in the spectra of all program stars can be widely explained by a rotational modulation of the line profiles generated by a local accretion flow. This result is in good agreement with the predictions of the magnetospheric accretion model. For the first time, the rotation period of HD104237 (P_rot = 5.37+-0.03 days), as well as the inclination angle (i = 21+-4deg) were determined. Additional analysis of the HARPSpol spectra of HD104237 and HD190073, taken from the ESO archive, with the use of the SVD method shows that the magnetic field structure of HD190073 is likely more complex than a simple dipole and contains a circumstellar component. For the first time, the magnetic field of the secondary component of the binary system HD104237 was also detected (<B_z> = 128+-10G).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا