No Arabic abstract
In this article, we investigate the quantum circuit complexity and entanglement entropy in the recently studied black hole gas framework using the two-mode squeezed states formalism written in arbitrary dimensional spatially flat cosmological Friedmann-Lema$hat{i}$tre-Robertson-Walker (FLRW) background space-time. We compute the various complexity measures and study the evolution of these complexities by following two different prescriptions viz. Covariant matrix method and Nielsens method. Independently, using the two-mode squeezed states formalism we also compute the Renyi and Von-Neumann entanglement entropy, which show an inherent connection between the entanglement entropy and quantum circuit complexity. We study the behaviour of the complexity measures and entanglement entropy separately for three different spatial dimensions and observe various significant different features in three spatial dimensions on the evolution of these quantities with respect to the scale factor. Furthermore, we also study the underlying behaviour of the equilibrium temperature with two of the most essential quantities i.e. rate of change of complexity with scale factor and the entanglement entropy. We observe that irrespective of the spatial dimension, the equilibrium temperature depends quartically on entanglement entropy.
In this paper, we will propose a universal relation between the holographic complexity (dual to a volume in AdS) and the holographic entanglement entropy (dual to an area in AdS). We will explicitly demonstrate that our conjuncture hold for all a metric asymptotic to AdS$_3$, and then argue that such a relation should hold in general due to the AdS version of the Cavalieri principle. We will demonstrate that it holds for Janus solution, which have been recently been obtained in type IIB string theory. We will also show that this conjecture holds for a circular disk. This conjecture will be used to show that the proposal that the complexity equals action, and the proposal that the complexity equal volume can represent the same physics. Thus, using this conjecture, we will show that the black holes are fastest computers, using the proposal that complexity equals volume.
In this work, we study the computational complexity of massive gravity theory via the Complexity = Action conjecture. Our system contains a particle moving on the boundary of the black hole spacetime. It is dual to inserting a fundamental string in the bulk background. Then this string would contribute a Nambu-Goto term, such that the total action is composed of the Einstein-Hilbert term, Nambu-Goto term and the boundary term. We shall investigate the time development of this system, and mainly discuss the features of the Nambu-Goto term affected by the graviton mass and the horizon curvature in different dimensions. Our study could contribute interesting properties of complexity.
Recently in various theoretical works, path-breaking progress has been made in recovering the well-known Page Curve of an evaporating black hole with Quantum Extremal Islands, proposed to solve the long-standing black hole information loss problem related to the unitarity issue. Motivated by this concept, in this paper, we study cosmological circuit complexity in the presence (or absence) of Quantum Extremal Islands in the negative (or positive) Cosmological Constant with radiation in the background of Friedmann-Lema$hat{i}$tre-Robertson-Walker (FLRW) space-time i.e the presence and absence of islands in anti-de Sitter and the de Sitter spacetime having SO(2, 3) and SO(1, 4) isometries respectively. Without using any explicit details of any gravity model, we study the behaviour of the circuit complexity function with respect to the dynamical cosmological solution for the scale factors for the above-mentioned two situations in FLRW space-time using squeezed state formalism. By studying the cosmological circuit complexity, Out-of-Time Ordered Correlators, and entanglement entropy of the modes of the squeezed state, in different parameter spaces, we conclude the non-universality of these measures. Their remarkably different features in the different parameter spaces suggest their dependence on the parameters of the model under consideration.
We investigate the evolution of complexity and entanglement following a quench in a one-dimensional topological system, namely the Su-Schrieffer-Heeger model. We demonstrate that complexity can detect quantum phase transitions and shows signatures of revivals; this observation provides a practical advantage in information processing. We also show that the complexity saturates much faster than the entanglement entropy in this system, and we provide a physical argument for this. Finally, we demonstrate that complexity is a less sensitive probe of topological order, compared with measures of entanglement.
$Circuit~ Complexity$, a well known computational technique has recently become the backbone of the physics community to probe the chaotic behaviour and random quantum fluctuations of quantum fields. This paper is devoted to the study of out-of-equilibrium aspects and quantum chaos appearing in the universe from the paradigm of two well known bouncing cosmological solutions viz. $Cosine~ hyperbolic$ and $Exponential$ models of scale factors. Besides $circuit~ complexity$, we use the $Out-of-Time~ Ordered~ correlation~ (OTOC)$ functions for probing the random behaviour of the universe both at early and the late times. In particular, we use the techniques of well known two-mode squeezed state formalism in cosmological perturbation theory as a key ingredient for the purpose of our computation. To give an appropriate theoretical interpretation that is consistent with the observational perspective we use the scale factor and the number of e-foldings as a dynamical variable instead of conformal time for this computation. From this study, we found that the period of post bounce is the most interesting one. Though it may not be immediately visible, but an exponential rise can be seen in the $complexity$ once the post bounce feature is extrapolated to the present time scales. We also find within the very small acceptable error range a universal connecting relation between Complexity computed from two different kinds of cost functionals-$linearly~ weighted$ and $geodesic~ weighted$ with the OTOC. Furthermore, from the $complexity$ computation obtained from both the cosmological models and also using the well known MSS bound on quantum Lyapunov exponent, $lambdaleq 2pi/beta$ for the saturation of chaos, we estimate the lower bound on the equilibrium temperature of our universe at late time scale. Finally, we provide a rough estimation of the scrambling time in terms of the conformal time.