Do you want to publish a course? Click here

Quantum aspects of chaos and complexity from bouncing cosmology: A study with two-mode single field squeezed state formalism

82   0   0.0 ( 0 )
 Added by Sayantan Choudhury
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

$Circuit~ Complexity$, a well known computational technique has recently become the backbone of the physics community to probe the chaotic behaviour and random quantum fluctuations of quantum fields. This paper is devoted to the study of out-of-equilibrium aspects and quantum chaos appearing in the universe from the paradigm of two well known bouncing cosmological solutions viz. $Cosine~ hyperbolic$ and $Exponential$ models of scale factors. Besides $circuit~ complexity$, we use the $Out-of-Time~ Ordered~ correlation~ (OTOC)$ functions for probing the random behaviour of the universe both at early and the late times. In particular, we use the techniques of well known two-mode squeezed state formalism in cosmological perturbation theory as a key ingredient for the purpose of our computation. To give an appropriate theoretical interpretation that is consistent with the observational perspective we use the scale factor and the number of e-foldings as a dynamical variable instead of conformal time for this computation. From this study, we found that the period of post bounce is the most interesting one. Though it may not be immediately visible, but an exponential rise can be seen in the $complexity$ once the post bounce feature is extrapolated to the present time scales. We also find within the very small acceptable error range a universal connecting relation between Complexity computed from two different kinds of cost functionals-$linearly~ weighted$ and $geodesic~ weighted$ with the OTOC. Furthermore, from the $complexity$ computation obtained from both the cosmological models and also using the well known MSS bound on quantum Lyapunov exponent, $lambdaleq 2pi/beta$ for the saturation of chaos, we estimate the lower bound on the equilibrium temperature of our universe at late time scale. Finally, we provide a rough estimation of the scrambling time in terms of the conformal time.



rate research

Read More

In this work, our prime objective is to study the phenomena of quantum chaos and complexity in the machine learning dynamics of Quantum Neural Network (QNN). A Parameterized Quantum Circuits (PQCs) in the hybrid quantum-classical framework is introduced as a universal function approximator to perform optimization with Stochastic Gradient Descent (SGD). We employ a statistical and differential geometric approach to study the learning theory of QNN. The evolution of parametrized unitary operators is correlated with the trajectory of parameters in the Diffusion metric. We establish the parametrized version of Quantum Complexity and Quantum Chaos in terms of physically relevant quantities, which are not only essential in determining the stability, but also essential in providing a very significant lower bound to the generalization capability of QNN. We explicitly prove that when the system executes limit cycles or oscillations in the phase space, the generalization capability of QNN is maximized. Finally, we have determined the generalization capability bound on the variance of parameters of the QNN in a steady state condition using Cauchy Schwartz Inequality.
Computation of circuit complexity has gained much attention in the Theoretical Physics community in recent times to gain insights about the chaotic features and random fluctuations of fields in the quantum regime. Recent studies of circuit complexity take inspiration from the geometric approach of Nielsen, which itself is based on the idea of optimal quantum control in which a cost function is introduced for the various possible path to determine the optimum circuit. In this paper, we study the relationship between the circuit complexity and Morse theory within the framework of algebraic topology using which we study circuit complexity in supersymmetric quantum field theory describing both simple and inverted harmonic oscillators up to higher orders of quantum corrections. The expression of circuit complexity in quantum regime would then be given by the Hessian of the Morse function in supersymmetric quantum field theory, and try to draw conclusion from their graphical behaviour. We also provide a technical proof of the well known universal connecting relation between quantum chaos and circuit complexity of the supersymmetric quantum field theories, using the general description of Morse theory.
Recently in various theoretical works, path-breaking progress has been made in recovering the well-known Page Curve of an evaporating black hole with Quantum Extremal Islands, proposed to solve the long-standing black hole information loss problem related to the unitarity issue. Motivated by this concept, in this paper, we study cosmological circuit complexity in the presence (or absence) of Quantum Extremal Islands in the negative (or positive) Cosmological Constant with radiation in the background of Friedmann-Lema$hat{i}$tre-Robertson-Walker (FLRW) space-time i.e the presence and absence of islands in anti-de Sitter and the de Sitter spacetime having SO(2, 3) and SO(1, 4) isometries respectively. Without using any explicit details of any gravity model, we study the behaviour of the circuit complexity function with respect to the dynamical cosmological solution for the scale factors for the above-mentioned two situations in FLRW space-time using squeezed state formalism. By studying the cosmological circuit complexity, Out-of-Time Ordered Correlators, and entanglement entropy of the modes of the squeezed state, in different parameter spaces, we conclude the non-universality of these measures. Their remarkably different features in the different parameter spaces suggest their dependence on the parameters of the model under consideration.
We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include condensed matter systems with quenched disorder (e.g. spin glass) or cosmological systems in context of the string theory landscape (e.g. cosmic inflation). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.
In this article, using the principles of Random Matrix Theory (RMT), we give a measure of quantum chaos by quantifying Spectral From Factor (SFF) appearing from the computation of two-point Out of Time Order Correlation function (OTOC) expressed in terms of square of the commutator bracket of quantum operators which are separated in time. We also provide a strict model independent bound on the measure of quantum chaos, $-1/N(1-1/pi)leq {bf SFF}leq 0$ and $0leq {bf SFF}leq 1/pi N$, valid for thermal systems with a large and small number of degrees of freedom respectively. Based on the appropriate physical arguments we give a precise mathematical derivation to establish this alternative strict bound of quantum chaos.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا