Do you want to publish a course? Click here

Post-Quench Evolution of Complexity and Entanglement in a Topological System

74   0   0.0 ( 0 )
 Added by Arpan Bhattacharyya
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the evolution of complexity and entanglement following a quench in a one-dimensional topological system, namely the Su-Schrieffer-Heeger model. We demonstrate that complexity can detect quantum phase transitions and shows signatures of revivals; this observation provides a practical advantage in information processing. We also show that the complexity saturates much faster than the entanglement entropy in this system, and we provide a physical argument for this. Finally, we demonstrate that complexity is a less sensitive probe of topological order, compared with measures of entanglement.



rate research

Read More

We study the evolution of holographic complexity of pure and mixed states in $1+1$-dimensional conformal field theory following a local quench using both the complexity equals volume (CV) and the complexity equals action (CA) conjectures. We compare the complexity evolution to the evolution of entanglement entropy and entanglement density, discuss the Lloyd computational bound and demonstrate its saturation in certain regimes. We argue that the conjectured holographic complexities exhibit some non-trivial features indicating that they capture important properties of what is expected to be effective (or physical) complexity.
105 - Dmitry S. Ageev 2020
We propose a charged falling particle in an AdS space as a holographic model of local charged quench generalizing model of arXiv:1302.5703. The quench is followed by evolving currents and inhomogeneous distribution of chemical potential. We derive the analytical formula describing the evolution of the entanglement entropy. At some characteristic time after the quench, we find that the entanglement shows a sharp dip. This effect is universal and independent of the dimension of the system. At finite temperature generalization of this model, we find that multiple dips and ramps appear.
145 - Shao-Kai Jian , Brian Swingle , 2020
The concepts of operator size and computational complexity play important roles in the study of quantum chaos and holographic duality because they help characterize the structure of time-evolving Heisenberg operators. It is particularly important to understand how these microscopically defined measures of complexity are related to notions of complexity defined in terms of a dual holographic geometry, such as complexity-volume (CV) duality. Here we study partially entangled thermal states in the Sachdev-Ye-Kitaev (SYK) model and their dual description in terms of operators inserted in the interior of a black hole in Jackiw-Teitelboim (JT) gravity. We compare a microscopic definition of complexity in the SYK model known as K-complexity to calculations using CV duality in JT gravity and find that both quantities show an exponential-to-linear growth behavior. We also calculate the growth of operator size under time evolution and find connections between size and complexity. While the notion of operator size saturates at the scrambling time, our study suggests that complexity, which is well defined in both quantum systems and gravity theories, can serve as a useful measure of operator evolution at both early and late times.
We investigate a class of exactly solvable quantum quench protocols with a finite quench rate in systems of one dimensional non-relativistic fermions in external harmonic oscillator or inverted harmonic oscillator potentials, with time dependent masses and frequencies. These hamiltonians arise, respectively, in harmonic traps, and the $c=1$ Matrix Model description of two dimensional string theory with time dependent string coupling. We show how the dynamics is determined by a single function of time which satisfies a generalized Ermakov-Pinney equation. The quench protocols we consider asymptote to constant masses and frequencies at early times, and cross or approach a gapless potential. In a right side up harmonic oscillator potential we determine the scaling behavior of the one point function and the entanglement entropy of a subregion by obtaining analytic approximations to the exact answers. The results are consistent with Kibble-Zurek scaling for slow quenches and with perturbation calculations for fast quenches. For cis-critical quench protocols the entanglement entropy oscillates at late times around its initial value. For end-critical protocols the entanglement entropy monotonically goes to zero inversely with time, reflecting the spread of fermions over the entire line. For the inverted harmonic oscillator potential, the dual collective field description is a scalar field in a time dependent metric and dilaton background.
We develop a geometric approach to operator growth and Krylov complexity in many-body quantum systems governed by symmetries. We start by showing a direct link between a unitary evolution with the Liouvillian and the displacement operator of appropriate generalized coherent states. This connection maps operator growth to a purely classical motion in phase space. The phase spaces are endowed with a natural information metric. We show that, in this geometry, operator growth is represented by geodesics and Krylov complexity is proportional to a volume. This geometric perspective also provides two novel avenues towards computation of Lanczos coefficients and sheds new light on the origin of their maximal growth. We describe the general idea and analyze it in explicit examples among which we reproduce known results from the Sachdev-Ye-Kitaev model, derive operator growth based on SU(2) and Heisenberg-Weyl symmetries, and generalize the discussion to conformal field theories. Finally, we use techniques from quantum optics to study operator evolution with quantum information tools such as entanglement and Renyi entropies, negativity, fidelity, relative entropy and capacity of entanglement.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا