No Arabic abstract
The gravitational shock waves have provided crucial insights into entanglement structures of black holes in the AdS/CFT correspondence. Recent progress on the soft hair physics suggests that these developments from holography may also be applicable to geometries beyond negatively curved spacetime. In this work, we derive a remarkably simple thermodynamic relation which relates the gravitational shock wave to a microscopic area deformation. Our treatment is based on the covariant phase space formalism and is applicable to any Killing horizon in generic static spacetime which is governed by arbitrary covariant theory of gravity. The central idea is to probe the gravitational shock wave, which shifts the horizon in the $u$ direction, by the Noether charge constructed from a vector field which shifts the horizon in the $v$ direction. As an application, we illustrate its use for the Gauss-Bonnet gravity. We also derive a simplified form of the gravitational scattering unitary matrix and show that its leading-order contribution is nothing but the exponential of the horizon area: $mathcal{U}=exp(i text{Area})$.
In an attempt to find a quasi-local measure of quantum entanglement, we introduce the concept of entanglement density in relativistic quantum theories. This density is defined in terms of infinitesimal variations of the region whose entanglement we monitor, and in certain cases can be mapped to the variations of the generating points of the associated domain of dependence. We argue that strong sub-additivity constrains the entanglement density to be positive semi-definite. Examining this density in the holographic context, we map its positivity to a statement of integrated null energy condition in the gravity dual. We further speculate that this may be mapped to a statement analogous to the second law of black hole thermodynamics, for the extremal surface.
We consider the consequences of the dual gravitational charges for the phase space of radiating modes, and find that they imply a new soft NUT theorem. In particular, we argue that the existence of these new charges removes the need for imposing boundary conditions at spacelike infinity that would otherwise preclude the existence of NUT charges.
We construct a generalized Smarr formula which could provide a thermodynamic route to derive the covariant field equation of general theories of gravity in dynamic spacetimes. Combining some thermodynamic variables and a new chemical potential conjugated to the number of degree of freedom on the holographic screen, we find a universal Cardy-Verlinde formula and give its braneworld interpretation. We demonstrate that the associated AdS-Bekenstein bound is tighten than the previous expression for multi-charge black holes in the gauged supergravities. The Cardy-Verlinde formula and the AdS-Bekenstein bound are derived from the thermodynamics of bulk trapping horizons, which strongly suggests the underlying holographic duality between dynamical bulk spacetime and boundary field theory.
We explore the relationship between the first law of thermodynamics and gravitational field equation at a static, spherically symmetric black hole horizon in Hov{r}ava-Lifshtiz theory with/without detailed balance. It turns out that as in the cases of Einstein gravity and Lovelock gravity, the gravitational field equation can be cast to a form of the first law of thermodynamics at the black hole horizon. This way we obtain the expressions for entropy and mass in terms of black hole horizon, consistent with those from other approaches. We also define a generalized Misner-Sharp energy for static, spherically symmetric spacetimes in Hov{r}ava-Lifshtiz theory. The generalized Misner-Sharp energy is conserved in the case without matter field, and its variation gives the first law of black hole thermodynamics at black hole horizon.