Do you want to publish a course? Click here

Gravitational thermodynamics and universal holographic duality in dynamical spacetimes

243   0   0.0 ( 0 )
 Added by Shao-Feng Wu
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a generalized Smarr formula which could provide a thermodynamic route to derive the covariant field equation of general theories of gravity in dynamic spacetimes. Combining some thermodynamic variables and a new chemical potential conjugated to the number of degree of freedom on the holographic screen, we find a universal Cardy-Verlinde formula and give its braneworld interpretation. We demonstrate that the associated AdS-Bekenstein bound is tighten than the previous expression for multi-charge black holes in the gauged supergravities. The Cardy-Verlinde formula and the AdS-Bekenstein bound are derived from the thermodynamics of bulk trapping horizons, which strongly suggests the underlying holographic duality between dynamical bulk spacetime and boundary field theory.



rate research

Read More

In an attempt to find a quasi-local measure of quantum entanglement, we introduce the concept of entanglement density in relativistic quantum theories. This density is defined in terms of infinitesimal variations of the region whose entanglement we monitor, and in certain cases can be mapped to the variations of the generating points of the associated domain of dependence. We argue that strong sub-additivity constrains the entanglement density to be positive semi-definite. Examining this density in the holographic context, we map its positivity to a statement of integrated null energy condition in the gravity dual. We further speculate that this may be mapped to a statement analogous to the second law of black hole thermodynamics, for the extremal surface.
We propose dual thermodynamics corresponding to black hole mechanics with the identifications E -> A/4, S -> M, and T -> 1/T in Planck units. Here A, M and T are the horizon area, mass and Hawking temperature of a black hole and E, S and T are the energy, entropy and temperature of a corresponding dual quantum system. We show that, for a Schwarzschild black hole, the dual variables formally satisfy all three laws of thermodynamics, including the Planck-Nernst form of the third law requiring that the entropy tend to zero at low temperature. This is in contrast with traditional black hole thermodynamics, where the entropy is singular. Once the third law is satisfied, it is straightforward to construct simple (dual) quantum systems representing black hole mechanics. As an example, we construct toy models from one dimensional (Fermi or Bose) quantum gases with N ~ M in a Planck scale box. In addition to recovering black hole mechanics, we obtain quantum corrections to the entropy, including the logarithmic correction obtained by previous papers. The energy-entropy duality transforms a strongly interacting gravitational system (black hole) into a weakly interacting quantum system (quantum gas) and thus provides a natural framework for the quantum statistics underlying the holographic conjecture.
Motivated by the understanding of holography as realized in tensor networks, we develop a bulk procedure that can be interpreted as generating a sequence of coarse-grained holographic states. The coarse-graining procedure involves identifying degrees of freedom entangled at short distances and disentangling them. This is manifested in the bulk by a flow equation that generates a codimension-1 object, which we refer to as the holographic slice. We generalize the earlier classical construction to include bulk quantum corrections, which naturally involves the generalized entropy as a measure of the number of relevant boundary degrees of freedom. The semiclassical coarse-graining results in a flow that approaches quantum extremal surfaces such as entanglement islands that have appeared in discussions of the black hole information paradox. We also discuss the relation of the present picture to the view that the holographic dictionary works as quantum error correction.
We explore the relationship between the first law of thermodynamics and gravitational field equation at a static, spherically symmetric black hole horizon in Hov{r}ava-Lifshtiz theory with/without detailed balance. It turns out that as in the cases of Einstein gravity and Lovelock gravity, the gravitational field equation can be cast to a form of the first law of thermodynamics at the black hole horizon. This way we obtain the expressions for entropy and mass in terms of black hole horizon, consistent with those from other approaches. We also define a generalized Misner-Sharp energy for static, spherically symmetric spacetimes in Hov{r}ava-Lifshtiz theory. The generalized Misner-Sharp energy is conserved in the case without matter field, and its variation gives the first law of black hole thermodynamics at black hole horizon.
132 - Shuwei Liu , Beni Yoshida 2021
The gravitational shock waves have provided crucial insights into entanglement structures of black holes in the AdS/CFT correspondence. Recent progress on the soft hair physics suggests that these developments from holography may also be applicable to geometries beyond negatively curved spacetime. In this work, we derive a remarkably simple thermodynamic relation which relates the gravitational shock wave to a microscopic area deformation. Our treatment is based on the covariant phase space formalism and is applicable to any Killing horizon in generic static spacetime which is governed by arbitrary covariant theory of gravity. The central idea is to probe the gravitational shock wave, which shifts the horizon in the $u$ direction, by the Noether charge constructed from a vector field which shifts the horizon in the $v$ direction. As an application, we illustrate its use for the Gauss-Bonnet gravity. We also derive a simplified form of the gravitational scattering unitary matrix and show that its leading-order contribution is nothing but the exponential of the horizon area: $mathcal{U}=exp(i text{Area})$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا