The gravitational shock waves have provided crucial insights into entanglement structures of black holes in the AdS/CFT correspondence. Recent progress on the soft hair physics suggests that these developments from holography may also be applicable to geometries beyond negatively curved spacetime. In this work, we derive a remarkably simple thermodynamic relation which relates the gravitational shock wave to a microscopic area deformation. Our treatment is based on the covariant phase space formalism and is applicable to any Killing horizon in generic static spacetime which is governed by arbitrary covariant theory of gravity. The central idea is to probe the gravitational shock wave, which shifts the horizon in the $u$ direction, by the Noether charge constructed from a vector field which shifts the horizon in the $v$ direction. As an application, we illustrate its use for the Gauss-Bonnet gravity. We also derive a simplified form of the gravitational scattering unitary matrix and show that its leading-order contribution is nothing but the exponential of the horizon area: $mathcal{U}=exp(i text{Area})$.
Using the volume of the space enclosed by the Ryu-Takayanagi (RT) surface, we study the complexity of the disk-shape subregion (with radius R) in various (2+1)-dimensional gapped systems with gravity dual. These systems include a class of toy models with singular IR and the bottom-up models for quantum chromodynamics and fractional quantum Hall effects. Two main results are: i) in the large-R expansion of the complexity, the R-linear term is always absent, similar to the absence of topological entanglement entropy; ii) when the entanglement entropy exhibits the classic `swallowtail phase transition, the complexity is sensitive but reacts differently.
We investigate a simple holographic model for cold and dense deconfined QCD matter consisting of three quark flavors. Varying the single free parameter of the model and utilizing a Chiral Effective Theory equation of state (EoS) for nuclear matter, we find four different compact star solutions: traditional neutron stars, strange quark stars, as well as two non-standard solutions we refer to as hybrid stars of the second and third kind (HS2 and HS3). The HS2s are composed of a nuclear matter core and a crust made of stable strange quark matter, while the HS3s have both a quark mantle and a nuclear crust on top of a nuclear matter core. For all types of stars constructed, we determine not only their mass-radius relations, but also tidal deformabilities, Love numbers, as well as moments of inertia and the mass distribution. We find that there exists a range of parameter values in our model, for which the novel hybrid stars have properties in very good agreement with all existing bounds on the stationary properties of compact stars. In particular, the tidal deformabilities of these solutions are smaller than those of ordinary neutron stars of the same mass, implying that they provide an excellent fit to the recent gravitational wave data GW170817 of LIGO and Virgo. The assumptions underlying the viability of the different star types, in particular those corresponding to absolutely stable quark matter, are finally discussed at some length.
We analyze the holographic subregion complexity in a $3d$ black hole with the vector hair. This $3d$ black hole is dual to a $1+1$ dimensional $p$-wave superconductor. We probe the black hole by changing the size of the interval and by fixing $q$ or $T$. We show that the universal part is finite across the superconductor phase transition and has competitive behaviors different from the finite part of entanglement entropy. The behavior of the subregion complexity depends on the gravitational coupling constant divided by the gauge coupling constant. When this ratio is less than the critical value, the subregion complexity increases as temperature becomes low. This behavior is similar to the one of the holographic $1+1$ dimensional $s$-wave superconductor arXiv:1704.00557. When the ratio is larger than the critical value, the subregion complexity has a non-monotonic behavior as a function of $q$ or $T$. We also find a discontinuous jump of the subregion complexity as a function of the size of the interval. The subregion complexity has the maximum when it wraps the almost entire spatial circle. Due to competitive behaviors between normal and condensed phases, the universal term in the condensed phase becomes even smaller than that of the normal phase by probing the black hole horizon at a large interval. It implies that the formed condensate decreases the subregion complexity like the case of the entanglement entropy.
We explore the structure of holographic entropy relations (associated with information quantities given by a linear combination of entanglement entropies of spatial sub-partitions of a CFT state with geometric bulk dual). Such entropy relations can be recast in multiple ways, some of which have significant advantages. Motivated by the already-noted simplification of entropy relations when recast in terms of multipartite information, we explore additional simplifications when recast in a new basis, which we dub the K-basis, constructed from perfect tensor structures. For the fundamental information quantities such a recasting is surprisingly compact, in part due to the interesting fact that entropy vectors associated to perfect tensors are in fact extreme rays in the holographic entropy cone (as well as the full quantum entropy cone). More importantly, we prove that all holographic entropy inequalities have positive coefficients when expressed in the K-basis, underlying the key advantage over the entropy basis or the multipartite information basis.