No Arabic abstract
Vision-based driver assistance systems is one of the rapidly growing research areas of ITS, due to various factors such as the increased level of safety requirements in automotive, computational power in embedded systems, and desire to get closer to autonomous driving. It is a cross disciplinary area encompassing specialised fields like computer vision, machine learning, robotic navigation, embedded systems, automotive electronics and safety critical software. In this paper, we survey the list of vision based advanced driver assistance systems with a consistent terminology and propose a taxonomy. We also propose an abstract model in an attempt to formalize a top-down view of application development to scale towards autonomous driving system.
Computer Vision, either alone or combined with other technologies such as radar or Lidar, is one of the key technologies used in Advanced Driver Assistance Systems (ADAS). Its role understanding and analysing the driving scene is of great importance as it can be noted by the number of ADAS applications that use this technology. However, porting a vision algorithm to an embedded automotive system is still very challenging, as there must be a trade-off between several design requisites. Furthermore, there is not a standard implementation platform, so different alternatives have been proposed by both the scientific community and the industry. This paper aims to review the requisites and the different embedded implementation platforms that can be used for Computer Vision-based ADAS, with a critical analysis and an outlook to future trends.
Human-computer interaction (HCI) is crucial for the safety of lives as autonomous vehicles (AVs) become commonplace. Yet, little effort has been put toward ensuring that AVs understand humans on the road. In this paper, we present GLADAS, a simulator-based research platform designed to teach AVs to understand pedestrian hand gestures. GLADAS supports the training, testing, and validation of deep learning-based self-driving car gesture recognition systems. We focus on gestures as they are a primordial (i.e, natural and common) way to interact with cars. To the best of our knowledge, GLADAS is the first system of its kind designed to provide an infrastructure for further research into human-AV interaction. We also develop a hand gesture recognition algorithm for self-driving cars, using GLADAS to evaluate its performance. Our results show that an AV understands human gestures 85.91% of the time, reinforcing the need for further research into human-AV interaction.
This paper presents the experimental comparison of fourteen stereo matching algorithms in variant illumination conditions. Different adaptations of global and local stereo matching techniques are chosen for evaluation The variant strength and weakness of the chosen correspondence algorithms are explored by employing the methodology of the prediction error strategy. The algorithms are gauged on the basis of their performance on real world data set taken in various indoor lighting conditions and at different times of the day
Navigation is one of the fundamental features of a autonomous robot. And the ability of long-term navigation with semantic instruction is a `holy grail` goals of intelligent robots. The development of 3D simulation technology provide a large scale of data to simulate the real-world environment. The deep learning proves its ability to robustly learn various embodied navigation tasks. However, deep learning on embodied navigation is still in its infancy due to the unique challenges faced by the navigation exploration and learning from partial observed visual input. Recently, deep learning in embodied navigation has become even thriving, with numerous methods have been proposed to tackle different challenges in this area. To give a promising direction for future research, in this paper, we present a comprehensive review of embodied navigation tasks and the recent progress in deep learning based methods. It includes two major tasks: target-oriented navigation and the instruction-oriented navigation.
Decentralized deployment of drone swarms usually relies on inter-agent communication or visual markers that are mounted on the vehicles to simplify their mutual detection. This letter proposes a vision-based detection and tracking algorithm that enables groups of drones to navigate without communication or visual markers. We employ a convolutional neural network to detect and localize nearby agents onboard the quadcopters in real-time. Rather than manually labeling a dataset, we automatically annotate images to train the neural network using background subtraction by systematically flying a quadcopter in front of a static camera. We use a multi-agent state tracker to estimate the relative positions and velocities of nearby agents, which are subsequently fed to a flocking algorithm for high-level control. The drones are equipped with multiple cameras to provide omnidirectional visual inputs. The camera setup ensures the safety of the flock by avoiding blind spots regardless of the agent configuration. We evaluate the approach with a group of three real quadcopters that are controlled using the proposed vision-based flocking algorithm. The results show that the drones can safely navigate in an outdoor environment despite substantial background clutter and difficult lighting conditions. The source code, image dataset, and trained detection model are available at https://github.com/lis-epfl/vswarm.