Do you want to publish a course? Click here

Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces

107   0   0.0 ( 0 )
 Added by Sergey E. Mikhailov
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This paper is build around the stationary anisotropic Stokes and Navier-Stokes systems with an $L^infty$-tensor coefficient satisfying an ellipticity condition in terms of symmetric matrices in ${mathbb R}^{ntimes n}$ with zero matrix traces. We analyze, in $L^2$-based Sobolev spaces, the non-homogeneous boundary value problems of Dirichlet-transmission type for the anisotropic Stokes and Navier-Stokes systems in a compressible framework in a bounded Lipschitz domain with a Lipschitz interface in ${mathbb R}^n$, $nge 2$ ($n=2,3$ for the nonlinear problems). The transversal interface intersects the boundary of the Lipschitz domain. First, we use a mixed variational approach to prove well-posedness results for the linear anisotropic Stokes system. Then we show the existence of a weak solution for the nonlinear anisotropic Navier-Stokes system by implementing the Leray-Schauder fixed point theorem and using various results and estimates from the linear case, as well as the Leray-Hopf and some other norm inequalities. Explicit conditions for uniqueness of solutions to the nonlinear problems are also provided.



rate research

Read More

We study stationary Stokes systems in divergence form with piecewise Dini mean oscillation coefficients and data in a bounded domain containing a finite number of subdomains with $C^{1,rm{Dini}}$ boundaries. We prove that if $(u, p)$ is a weak solution of the system, then $(Du, p)$ is bounded and piecewise continuous. The corresponding results for stationary Navier-Stokes systems are also established, from which the Lipschitz regularity of the stationary $H^1$-weak solution in dimensions $d=2,3,4$ is obtained.
In this paper we address the large-scale regularity theory for the stationary Navier-Stokes equations in highly oscillating bumpy John domains. These domains are very rough, possibly with fractals or cusps, at the microscopic scale, but are amenable to the mathematical analysis of the Navier-Stokes equations. We prove: (i) a large-scale Calderon-Zygmund estimate, (ii) a large-scale Lipschitz estimate, (iii) large-scale higher-order regularity estimates, namely, $C^{1,gamma}$ and $C^{2,gamma}$ estimates. These nice regularity results are inherited only at mesoscopic scales, and clearly fail in general at the microscopic scales. We emphasize that the large-scale $C^{1,gamma}$ regularity is obtained by using first-order boundary layers constructed via a new argument. The large-scale $C^{2,gamma}$ regularity relies on the construction of second-order boundary layers, which allows for certain boundary data with linear growth at spatial infinity. To the best of our knowledge, our work is the first to carry out such an analysis. In the wake of many works in quantitative homogenization, our results strongly advocate in favor of considering the boundary regularity of the solutions to fluid equations as a multiscale problem, with improved regularity at or above a certain scale.
We study the stationary Stokes system with Dini mean oscillation coefficients in a domain having $C^{1,rm{Dini}}$ boundary. We prove that if $(u, p)$ is a weak solution of the system with zero Dirichlet boundary condition, then $(Du,p)$ is continuous up to the boundary. We also prove a weak type-$(1,1)$ estimate for $(Du, p)$.
132 - Hyunseok Kim , Hyunwoo Kwon 2018
We consider the Dirichlet and Neumann problems for second-order linear elliptic equations: $$-triangle u +operatorname{div}(umathbf{b}) =f quadtext{ and }quad -triangle v -mathbf{b} cdot abla v =g$$ in a bounded Lipschitz domain $Omega$ in $mathbb{R}^n$ $(ngeq 3)$, where $mathbf{b}:Omega rightarrow mathbb{R}^n$ is a given vector field. Under the assumption that $mathbf{b} in L^{n}(Omega)^n$, we first establish existence and uniqueness of solutions in $L_{alpha}^{p}(Omega)$ for the Dirichlet and Neumann problems. Here $L_{alpha}^{p}(Omega)$ denotes the Sobolev space (or Bessel potential space) with the pair $(alpha,p)$ satisfying certain conditions. These results extend the classical works of Jerison-Kenig (1995, JFA) and Fabes-Mendez-Mitrea (1998, JFA) for the Poisson equation. We also prove existence and uniqueness of solutions of the Dirichlet problem with boundary data in $L^{2}(partialOmega)$.
363 - Bixiang Wang 2012
This paper is concerned with the asymptotic behavior of solutions of the two-dimensional Navier-Stokes equations with both non-autonomous deterministic and stochastic terms defined on unbounded domains. We first introduce a continuous cocycle for the equations and then prove the existence and uniqueness of tempered random attractors. We also characterize the structures of the random attractors by complete solutions. When deterministic forcing terms are periodic, we show that the tempered random attractors are also periodic. Since the Sobolev embeddings on unbounded domains are not compact, we establish the pullback asymptotic compactness of solutions by Balls idea of energy equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا