Do you want to publish a course? Click here

A comprehensive study of vector leptoquark on the $B$-meson and Muon g-2 anomalies

160   0   0.0 ( 0 )
 Added by Po-Yan Tseng
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Recently reported anomalies in various $B$ meson decays and also in the anomalous magnetic moment of muon $(g-2)$ motivate us to consider a particular extension of the standard model incorporating new interactions in lepton and quark sectors simultaneously. Our minimal choice would be leptoquark. In particular, we take vector leptoquark ($U_1$) and comprehensively study all related observables including ${(g-2)_{mu}}, R_{K^{(*)}}, R_{D^{(*)}}$, $B to (K) ell ell $ where $ellell$ are various combinations of $mu$ and $tau$, and also lepton flavor violation in the $tau$ decays.



rate research

Read More

We show that a single vector leptoquark can explain both the muon $g-2$ anomaly recently measured by the Muon g-2 experiment at Fermilab, and the various $B$ decay anomalies, including the $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies which have been recently reported by the LHCb experiment. In order to provide sizeable positive new physics contributions to the muon $g-2$, we assume that the vector leptoquark particle couples to both left-handed and right-handed fermions with equal strength. Our model is found to satisfy the experimental constraints from the large hadron collider.
In the light of the recent result of the Muon g-2 experiment and the update on the test of lepton flavour universality $R_K$ published by the LHCb collaboration, we systematically build and discuss a set of models with minimal field content that can simultaneously give: (i) a thermal Dark Matter candidate; (ii) large loop contributions to $bto sellell$ processes able to address $R_K$ and the other $B$ anomalies; (iii) a natural solution to the muon $g-2$ discrepancy through chirally-enhanced contributions.
We present a model of radiative neutrino masses which also resolves anomalies reported in $B$-meson decays, $R_{D^{(star)}}$ and $R_{K^{(star)}}$, as well as in muon $g-2$ measurement, $Delta a_mu$. Neutrino masses arise in the model through loop diagrams involving TeV-scale leptoquark (LQ) scalars $R_2$ and $S_3$. Fits to neutrino oscillation parameters are obtained satisfying all flavor constraints which also explain the anomalies in $R_{D^{(star)}}$, $R_{K^{(star)}}$ and $Delta a_mu$ within $1, sigma$. An isospin-3/2 Higgs quadruplet plays a crucial role in generating neutrino masses; we point out that the doubly-charged scalar contained therein can be produced in the decays of the $S_3$ LQ, which enhances its reach to 1.1 (6.2) TeV at $sqrt s=14$ TeV high-luminosity LHC ($sqrt s=100$ TeV FCC-hh). We also present flavor-dependent upper limits on the Yukawa couplings of the LQs to the first two family fermions, arising from non-resonant dilepton ($pp rightarrow ell^+ ell^-$) processes mediated by $t$-channel LQ exchange, which for 1 TeV LQ mass, are found to be in the range $(0.15 - 0.36)$. These limits preclude any explanation of $R_{D^{(star)}}$ through LQ-mediated $B$-meson decays involving $ u_e$ or $ u_mu$ in the final state. We also find that the same Yukawa couplings responsible for the chirally-enhanced contribution to $Delta a_mu$ give rise to new contributions to the SM Higgs decays to muon and tau pairs, with the modifications to the corresponding branching ratios being at (2-6)% level, which could be tested at future hadron colliders, such as HL-LHC and FCC-hh.
We consider lepton flavor violating Higgs decay, specifically $h to mutau$, in a leptoquark model. We introduce two scalar leptoquarks with the $SU(3)_c times SU(2)_L times U(1)_Y$ quantum numbers, $(3,2,7/6)$ and $(3,2,1/6)$, which do not generate the proton decay within renormalizable level. They can mix with each other by interactions with the standard model Higgs. The constraint from the charged lepton flavor violating process, $tau^{-} to mu^{-} gamma$, is very strong when only one leptoquark contribution is considered. However, we demonstrate that significant cancellation is possible between the two leptoquark contributions. We show that we can explain the CMS (ATLAS) excess in $h to mu tau$. We also show that muon $(g-2)$ anomaly can also be accommodated.
The difference between the updated experimental result on the muon anomalous magnetic dipole moment and the corresponding theoretical prediction of the standard model on that is about $4.2$ standard deviations. In this work, we calculate the muon anomalous MDM at the two-loop level in the supersymmetric $B-L$ extension of the standard model. Considering the experimental constraints on the lightest Higgs boson mass, Higgs boson decay modes $hrightarrow gammagamma,;WW,;ZZ,; bbar b,;taubartau$, B rare decay $bar Brightarrow X_sgamma$, and the transition magnetic moments of Majorana neutrinos, we analyze the theoretical predictions of the muon anomalous magnetic dipole moment in the $B-L$ supersymmetric model. The numerical analyses indicate that the tension between the experimental measurement and the standard model prediction is remedied in the $B-L$ supersymmetric model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا