Do you want to publish a course? Click here

Unified Framework for $B$-Anomalies, Muon $g-2$, and Neutrino Masses

113   0   0.0 ( 0 )
 Added by Anil Thapa
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We present a model of radiative neutrino masses which also resolves anomalies reported in $B$-meson decays, $R_{D^{(star)}}$ and $R_{K^{(star)}}$, as well as in muon $g-2$ measurement, $Delta a_mu$. Neutrino masses arise in the model through loop diagrams involving TeV-scale leptoquark (LQ) scalars $R_2$ and $S_3$. Fits to neutrino oscillation parameters are obtained satisfying all flavor constraints which also explain the anomalies in $R_{D^{(star)}}$, $R_{K^{(star)}}$ and $Delta a_mu$ within $1, sigma$. An isospin-3/2 Higgs quadruplet plays a crucial role in generating neutrino masses; we point out that the doubly-charged scalar contained therein can be produced in the decays of the $S_3$ LQ, which enhances its reach to 1.1 (6.2) TeV at $sqrt s=14$ TeV high-luminosity LHC ($sqrt s=100$ TeV FCC-hh). We also present flavor-dependent upper limits on the Yukawa couplings of the LQs to the first two family fermions, arising from non-resonant dilepton ($pp rightarrow ell^+ ell^-$) processes mediated by $t$-channel LQ exchange, which for 1 TeV LQ mass, are found to be in the range $(0.15 - 0.36)$. These limits preclude any explanation of $R_{D^{(star)}}$ through LQ-mediated $B$-meson decays involving $ u_e$ or $ u_mu$ in the final state. We also find that the same Yukawa couplings responsible for the chirally-enhanced contribution to $Delta a_mu$ give rise to new contributions to the SM Higgs decays to muon and tau pairs, with the modifications to the corresponding branching ratios being at (2-6)% level, which could be tested at future hadron colliders, such as HL-LHC and FCC-hh.



rate research

Read More

In the light of the recent result of the Muon g-2 experiment and the update on the test of lepton flavour universality $R_K$ published by the LHCb collaboration, we systematically build and discuss a set of models with minimal field content that can simultaneously give: (i) a thermal Dark Matter candidate; (ii) large loop contributions to $bto sellell$ processes able to address $R_K$ and the other $B$ anomalies; (iii) a natural solution to the muon $g-2$ discrepancy through chirally-enhanced contributions.
204 - Di Zhang 2021
We propose a leptoquark model with two scalar leptoquarks $S^{}_1 left( bar{3},1,frac{1}{3} right)$ and $widetilde{R}^{}_2 left(3,2,frac{1}{6} right)$ to give a combined explanation of neutrino masses, lepton flavor mixing and the anomaly of muon $g-2$, satisfying the constraints from the radiative decays of charged leptons. The neutrino masses are generated via one-loop corrections resulting from a mixing between $S^{}_1$ and $widetilde{R}^{}_2$. With a set of specific textures for the leptoquark Yukawa coupling matrices, the neutrino mass matrix possesses an approximate $mu$-$tau$ reflection symmetry with $left( M^{}_ u right)^{}_{ee} = 0$ only in favor of the normal neutrino mass ordering. We show that this model can successfully explain the anomaly of muon $g-2$ and current experimental neutrino oscillation data under the constraints from the radiative decays of charged leptons.
We show that a unified framework based on an $SU(2)_H$ horizontal symmetry which generates a naturally large neutrino transition magnetic moment and explains the XENON1T electron recoil excess also predicts a positive shift in the muon anomalous magnetic moment. This shift is of the right magnitude to be consistent with the Brookhaven measurement as well as the recent Fermilab measurement of the muon $g-2$. A relatively light neutral scalar from a Higgs doublet with mass near 100 GeV contributes to muon $g-2$, while its charged partner induces the neutrino magnetic moment. We analyze the collider tests of this framework and find that the HL-LHC can probe the entire parameter space of these models.
We discuss the minimal theory for quark-lepton unification at the low scale. In this context, the quarks and leptons are unified in the same representations and neutrino masses are generated through the inverse seesaw mechanism. The properties of the leptoquarks predicted in this theory are discussed in detail and we investigate the predictions for the leptonic and semi-leptonic decays of mesons. We study the possibility to explain the current value of $mathcal{R}_K$ reported by the LHCb collaboration and the value of the muon anomalous magnetic moment reported by the Muon $g-2$ experiment at Fermilab.
We perform a phenomenological analysis of simplified models of light, feebly interacting particles (FIPs) that can provide a combined explanation of the anomalies in $bto s l^+ l ^-$ transitions at LHCb and the anomalous magnetic moment of the muon. Different scenarios are categorised according to the explicit momentum dependence of the FIP coupling to the $b-s$ and $mu-mu$ vector currents and they are subject to several constraints from flavour and precision physics. We show that a phenomenologically viable combined solution to the muon $g-2$ and flavour anomalies always exists if a vector with mass larger than $4 ,textrm{GeV}$ is exchanged. Interestingly, the LHC has the potential to probe this region of the parameter space by increasing the precision of the $Zto 4mu$ cross-section measurement. Conversely, we find that solutions based on the exchange of a lighter vector, in the $m_V < 1,textrm{GeV}$ range, are essentially excluded by a combination of $Bto K +textrm{invisible}$ and $W$-decay precision bounds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا