No Arabic abstract
The difference between the updated experimental result on the muon anomalous magnetic dipole moment and the corresponding theoretical prediction of the standard model on that is about $4.2$ standard deviations. In this work, we calculate the muon anomalous MDM at the two-loop level in the supersymmetric $B-L$ extension of the standard model. Considering the experimental constraints on the lightest Higgs boson mass, Higgs boson decay modes $hrightarrow gammagamma,;WW,;ZZ,; bbar b,;taubartau$, B rare decay $bar Brightarrow X_sgamma$, and the transition magnetic moments of Majorana neutrinos, we analyze the theoretical predictions of the muon anomalous magnetic dipole moment in the $B-L$ supersymmetric model. The numerical analyses indicate that the tension between the experimental measurement and the standard model prediction is remedied in the $B-L$ supersymmetric model.
In the light of the recent result of the Muon g-2 experiment and the update on the test of lepton flavour universality $R_K$ published by the LHCb collaboration, we systematically build and discuss a set of models with minimal field content that can simultaneously give: (i) a thermal Dark Matter candidate; (ii) large loop contributions to $bto sellell$ processes able to address $R_K$ and the other $B$ anomalies; (iii) a natural solution to the muon $g-2$ discrepancy through chirally-enhanced contributions.
In order to interpret the Higgs mass and its decays more naturally, we hope to intrude the BLMSSM and B-LSSM. In the both models, the right-handed neutrino superfields are introduced to better explain the neutrino mass problems. In addition, there are other superfields considered to make these models more natural than MSSM. In this paper, the method of $chi^2$ analyses will be adopted in the BLMSSM and B-LSSM to calculate the Higgs mass, Higgs decays and muon $g-2$. With the fine-tuning in the region $0.67%-2.5%$ and $0.67%-5%$, we can obtain the reasonable theoretical values that are in accordance with the experimental results respectively in the BLMSSM and B-LSSM. Meanwhile, the best-fitted benchmark points in the BLMSSM and B-LSSM will be acquired at minimal $(chi^{BL}_{min})^2 = 2.34736$ and $(chi^{B-L}_{min})^2 = 2.47754$, respectively.
We show that a single vector leptoquark can explain both the muon $g-2$ anomaly recently measured by the Muon g-2 experiment at Fermilab, and the various $B$ decay anomalies, including the $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies which have been recently reported by the LHCb experiment. In order to provide sizeable positive new physics contributions to the muon $g-2$, we assume that the vector leptoquark particle couples to both left-handed and right-handed fermions with equal strength. Our model is found to satisfy the experimental constraints from the large hadron collider.
We present a model of radiative neutrino masses which also resolves anomalies reported in $B$-meson decays, $R_{D^{(star)}}$ and $R_{K^{(star)}}$, as well as in muon $g-2$ measurement, $Delta a_mu$. Neutrino masses arise in the model through loop diagrams involving TeV-scale leptoquark (LQ) scalars $R_2$ and $S_3$. Fits to neutrino oscillation parameters are obtained satisfying all flavor constraints which also explain the anomalies in $R_{D^{(star)}}$, $R_{K^{(star)}}$ and $Delta a_mu$ within $1, sigma$. An isospin-3/2 Higgs quadruplet plays a crucial role in generating neutrino masses; we point out that the doubly-charged scalar contained therein can be produced in the decays of the $S_3$ LQ, which enhances its reach to 1.1 (6.2) TeV at $sqrt s=14$ TeV high-luminosity LHC ($sqrt s=100$ TeV FCC-hh). We also present flavor-dependent upper limits on the Yukawa couplings of the LQs to the first two family fermions, arising from non-resonant dilepton ($pp rightarrow ell^+ ell^-$) processes mediated by $t$-channel LQ exchange, which for 1 TeV LQ mass, are found to be in the range $(0.15 - 0.36)$. These limits preclude any explanation of $R_{D^{(star)}}$ through LQ-mediated $B$-meson decays involving $ u_e$ or $ u_mu$ in the final state. We also find that the same Yukawa couplings responsible for the chirally-enhanced contribution to $Delta a_mu$ give rise to new contributions to the SM Higgs decays to muon and tau pairs, with the modifications to the corresponding branching ratios being at (2-6)% level, which could be tested at future hadron colliders, such as HL-LHC and FCC-hh.
The long-standing muon $g-2$ anomaly has been confirmed recently at the Fermilab. The combined discrepancy from Fermilab and Brookhaven results shows a difference from the theory at a significance of 4.2 $sigma$. In addition, the LHC has updated the lower mass bound of a pure wino. In this letter, we study to what extent the $g-2$ can be explained in anomaly mediation scenarios, where the pure wino is the dominant dark matter component. To this end, we derive some model-independent constraints on the particle spectra and $g-2$. We find that the $g-2$ explanation at the 1$sigma$ level is driven into a corner if the higgsino threshold correction is suppressed. On the contrary, if the threshold correction is sizable, the $g-2$ can be explained. In the whole viable parameter region, the gluino mass is at most $2-4,$TeV, the bino mass is at most $2,$TeV, and the wino dark matter mass is at most $1-2,$TeV. If the muon $g-2$ anomaly is explained in the anomaly mediation scenarios, colliders and indirect search for the dark matter may find further pieces of evidence in the near future. Possible UV models for the large threshold corrections are discussed.