Do you want to publish a course? Click here

From partners to populations: A hierarchical Bayesian account of coordination and convention

90   0   0.0 ( 0 )
 Added by Robert Hawkins
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Languages are powerful solutions to coordination problems: they provide stable, shared expectations about how the words we say correspond to the beliefs and intentions in our heads. Yet language use in a variable and non-stationary social environment requires linguistic representations to be flexible: old words acquire new ad hoc or partner-specific meanings on the fly. In this paper, we introduce a hierarchical Bayesian theory of convention formation that aims to reconcile the long-standing tension between these two basic observations. More specifically, we argue that the central computational problem of communication is not simply transmission, as in classical formulations, but learning and adaptation over multiple timescales. Under our account, rapid learning within dyadic interactions allows for coordination on partner-specific common ground, while social conventions are stable priors that have been abstracted away from interactions with multiple partners. We present new empirical data alongside simulations showing how our model provides a cognitive foundation for explaining several phenomena that have posed a challenge for previous accounts: (1) the convergence to more efficient referring expressions across repeated interaction with the same partner, (2) the gradual transfer of partner-specific common ground to novel partners, and (3) the influence of communicative context on which conventions eventually form.



rate research

Read More

A key property of linguistic conventions is that they hold over an entire community of speakers, allowing us to communicate efficiently even with people we have never met before. At the same time, much of our language use is partner-specific: we know that words may be understood differently by different people based on our shared history. This poses a challenge for accounts of convention formation. Exactly how do agents make the inferential leap to community-wide expectations while maintaining partner-specific knowledge? We propose a hierarchical Bayesian model to explain how speakers and listeners solve this inductive problem. To evaluate our models predictions, we conducted an experiment where participants played an extended natural-language communication game with different partners in a small community. We examine several measures of generalization and find key signatures of both partner-specificity and community convergence that distinguish our model from alternatives. These results suggest that partner-specificity is not only compatible with the formation of community-wide conventions, but may facilitate it when coupled with a powerful inductive mechanism.
Demographic studies of cosmic populations must contend with measurement errors and selection effects. We survey some of the key ideas astronomers have developed to deal with these complications, in the context of galaxy surveys and the literature on corrections for Malmquist and Eddington bias. From the perspective of modern statistics, such corrections arise naturally in the context of multilevel models, particularly in Bayesian treatments of such models: hierarchical Bayesian models. We survey some key lessons from hierarchical Bayesian modeling, including shrinkage estimation, which is closely related to traditional corrections devised by astronomers. We describe a framework for hierarchical Bayesian modeling of cosmic populations, tailored to features of astronomical surveys that are not typical of surveys in other disciplines. This thinned latent marked point process framework accounts for the tie between selection (detection) and measurement in astronomical surveys, treating selection and measurement error effects in a self-consistent manner.
We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter halos and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy color. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a $0.1$ dex accuracy, and the intrinsic scatter in halo mass with a $0.05$ dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with $log{M_*} > 11$, which have low satellite fractions.
We study a recent inferential framework, named posterior regularisation, on the Bayesian hierarchical mixture clustering (BHMC) model. This framework facilitates a simple way to impose extra constraints on a Bayesian model to overcome some weakness of the original model. It narrows the search space of the parameters of the Bayesian model through a formalism that imposes certain constraints on the features of the found solutions. In this paper, in order to enhance the separation of clusters, we apply posterior regularisation to impose max-margin constraints on the nodes at every level of the hierarchy. This paper shows how the framework integrates with BHMC and achieves the expected improvements over the original Bayesian model.
Interleaved texts, where posts belonging to different threads occur in one sequence, are a common occurrence, e.g., online chat conversations. To quickly obtain an overview of such texts, existing systems first disentangle the posts by threads and then extract summaries from those threads. The major issues with such systems are error propagation and non-fluent summary. To address those, we propose an end-to-end trainable hierarchical encoder-decoder system. We also introduce a novel hierarchical attention mechanism which combines three levels of information from an interleaved text, i.e, posts, phrases and words, and implicitly disentangles the threads. We evaluated the proposed system on multiple interleaved text datasets, and it out-performs a SOTA two-step system by 20-40%.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا