No Arabic abstract
We study a recent inferential framework, named posterior regularisation, on the Bayesian hierarchical mixture clustering (BHMC) model. This framework facilitates a simple way to impose extra constraints on a Bayesian model to overcome some weakness of the original model. It narrows the search space of the parameters of the Bayesian model through a formalism that imposes certain constraints on the features of the found solutions. In this paper, in order to enhance the separation of clusters, we apply posterior regularisation to impose max-margin constraints on the nodes at every level of the hierarchy. This paper shows how the framework integrates with BHMC and achieves the expected improvements over the original Bayesian model.
Many recent invertible neural architectures are based on coupling block designs where variables are divided in two subsets which serve as inputs of an easily invertible (usually affine) triangular transformation. While such a transformation is invertible, its Jacobian is very sparse and thus may lack expressiveness. This work presents a simple remedy by noting that subdivision and (affine) coupling can be repeated recursively within the resulting subsets, leading to an efficiently invertible block with dense, triangular Jacobian. By formulating our recursive coupling scheme via a hierarchical architecture, HINT allows sampling from a joint distribution p(y,x) and the corresponding posterior p(x|y) using a single invertible network. We evaluate our method on some standard data sets and benchmark its full power for density estimation and Bayesian inference on a novel data set of 2D shapes in Fourier parameterization, which enables consistent visualization of samples for different dimensionalities.
The problem of multimodal clustering arises whenever the data are gathered with several physically different sensors. Observations from different modalities are not necessarily aligned in the sense there there is no obvious way to associate or to compare them in some common space. A solution may consist in considering multiple clustering tasks independently for each modality. The main difficulty with such an approach is to guarantee that the unimodal clusterings are mutually consistent. In this paper we show that multimodal clustering can be addressed within a novel framework, namely conjugate mixture models. These models exploit the explicit transformations that are often available between an unobserved parameter space (objects) and each one of the observation spaces (sensors). We formulate the problem as a likelihood maximization task and we derive the associated conjugate expectation-maximization algorithm. The convergence properties of the proposed algorithm are thoroughly investigated. Several local/global optimization techniques are proposed in order to increase its convergence speed. Two initialization strategies are proposed and compared. A consistent model-selection criterion is proposed. The algorithm and its variants are tested and evaluated within the task of 3D localization of several speakers using both auditory and visual data.
In the problem of learning disentangled representations, one of the promising methods is to factorize aggregated posterior by penalizing the total correlation of sampled latent variables. However, this well-motivated strategy has a blind spot: there is a disparity between the sampled latent representation and its corresponding mean representation. In this paper, we provide a theoretical explanation that low total correlation of sampled representation cannot guarantee low total correlation of the mean representation. Indeed, we prove that for the multivariate normal distributions, the mean representation with arbitrarily high total correlation can have a corresponding sampled representation with bounded total correlation. We also propose a method to eliminate this disparity. Experiments show that our model can learn a mean representation with much lower total correlation, hence a factorized mean representation. Moreover, we offer a detailed explanation of the limitations of factorizing aggregated posterior: factor disintegration. Our work indicates a potential direction for future research of disentangled learning.
Previously in 2014, we proposed the Nearest Descent (ND) method, capable of generating an efficient Graph, called the in-tree (IT). Due to some beautiful and effective features, this IT structure proves well suited for data clustering. Although there exist some redundant edges in IT, they usually have salient features and thus it is not hard to remove them. Subsequently, in order to prevent the seemingly redundant edges from occurring, we proposed the Nearest Neighbor Descent (NND) by adding the Neighborhood constraint on ND. Consequently, clusters automatically emerged, without the additional requirement of removing the redundant edges. However, NND proved still not perfect, since it brought in a new yet worse problem, the over-partitioning problem. Now, in this paper, we propose a method, called the Hierarchical Nearest Neighbor Descent (H-NND), which overcomes the over-partitioning problem of NND via using the hierarchical strategy. Specifically, H-NND uses ND to effectively merge the over-segmented sub-graphs or clusters that NND produces. Like ND, H-NND also generates the IT structure, in which the redundant edges once again appear. This seemingly comes back to the situation that ND faces. However, compared with ND, the redundant edges in the IT structure generated by H-NND generally become more salient, thus being much easier and more reliable to be identified even by the simplest edge-removing method which takes the edge length as the only measure. In other words, the IT structure constructed by H-NND becomes more fitted for data clustering. We prove this on several clustering datasets of varying shapes, dimensions and attributes. Besides, compared with ND, H-NND generally takes less computation time to construct the IT data structure for the input data.
We study the problem of sampling from the power posterior distribution in Bayesian Gaussian mixture models, a robust version of the classical posterior. This power posterior is known to be non-log-concave and multi-modal, which leads to exponential mixing times for some standard MCMC algorithms. We introduce and study the Reflected Metropolis-Hastings Random Walk (RMRW) algorithm for sampling. For symmetric two-component Gaussian mixtures, we prove that its mixing time is bounded as $d^{1.5}(d + Vert theta_{0} Vert^2)^{4.5}$ as long as the sample size $n$ is of the order $d (d + Vert theta_{0} Vert^2)$. Notably, this result requires no conditions on the separation of the two means. En route to proving this bound, we establish some new results of possible independent interest that allow for combining Poincar{e} inequalities for conditional and marginal densities.